6 research outputs found
Neural Working Memory Changes During a Spaceflight Analog With Elevated Carbon Dioxide: A Pilot Study
Spaceflight missions to the International Space Station (ISS) expose astronauts to
microgravity, radiation, isolation, and elevated carbon dioxide (COâ‚‚), among other
factors. Head down tilt bed rest (HDBR) is an Earth-based analog for spaceflight used to
study body unloading, fluid shifts, and other factors unrelated to gravitational changes.
While in space, astronauts need to use mental rotation strategies to facilitate their
adaptation to the ISS environment. Therefore, spatial working memory is essential for
crewmember performance. Although the effects of HDBR on spatial working memory
have recently been studied, the results are still inconclusive. Here, we expand upon
past work and examine the effects of HDBR with elevated COâ‚‚ (HDBR + COâ‚‚) on
brain activation patterns during spatial working memory performance. In addition,
we compare brain activation between 30 days of HDBR + COâ‚‚ and 70 days of
HDBR to test the isolated effect of COâ‚‚. Eleven subjects (6 males, 5 females; mean
age = 34 ± 8 years) underwent six functional magnetic resonance imaging (fMRI)
sessions pre-, during, and post-HDBR + COâ‚‚. During the HDBR + COâ‚‚ intervention,
we observed decreasing activation in the right middle frontal gyrus and left regions of
the cerebellum, followed by post-intervention recovery. We detected several correlations
between brain and behavioral slopes of change with the HDBR + COâ‚‚ intervention.
For example, greater increases in activation in frontal, temporal and parietal regions
were associated with larger spatial working memory improvements. Comparing the
HDBR + COâ‚‚ group to data from our previous 70-day HDBR study, we found greater
decreases in activation in the right hippocampus and left inferior temporal gyrus for
the HDBR + COâ‚‚ group over the course of the intervention. Together, these findings
increase our understanding of the neural mechanisms of HDBR, elevated levels of COâ‚‚
and spaceflight-related changes in spatial working memory performance
The Impact of 6 and 12 Months in Space on Human Brain Structure and Intracranial Fluid Shifts
As plans develop for Mars missions, it is important to understand how long-duration spaceflight impacts brain health. Here
we report how 12-month (n = 2 astronauts) versus 6-month (n = 10 astronauts) missions impact brain structure and fluid
shifts. We collected MRI scans once before flight and four times after flight. Astronauts served as their own controls; we
evaluated pre- to postflight changes and return toward preflight levels across the 4 postflight points. We also provide data to
illustrate typical brain changes over 7 years in a reference dataset. Twelve months in space generally resulted in larger
changes across multiple brain areas compared with 6-month missions and aging, particularly for fluid shifts. The majority of
changes returned to preflight levels by 6 months after flight. Ventricular volume substantially increased for 1 of the
12-month astronauts (left: +25%, right: +23%) and the 6-month astronauts (left: 17 ± 12%, right: 24 ± 6%) and exhibited little
recovery at 6 months. Several changes correlated with past flight experience; those with less time between subsequent missions had larger preflight ventricles and smaller ventricular volume increases with flight. This suggests that spaceflight-induced
ventricular changes may endure for long periods after flight. These results provide insight into brain changes that occur with longduration spaceflight and demonstrate the need for closer study of fluid shift
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Artificial gravity during a spaceflight analog alters brain sensory connectivity
Spaceflight has numerous untoward effects on human physiology. Various countermeasures are under investigation including artificial gravity (AG). Here, we investigated whether AG alters resting-state brain functional connectivity changes during head-down tilt bed rest (HDBR), a spaceflight analog. Participants underwent 60 days of HDBR. Two groups received daily AG administered either continuously (cAG) or intermittently (iAG). A control group received no AG. We assessed resting-state functional connectivity before, during, and after HDBR. We also measured balance and mobility changes from pre- to post-HDBR. We examined how functional connectivity changes throughout HDBR and whether AG is associated with differential effects. We found differential connectivity changes by group between posterior parietal cortex and multiple somatosensory regions. The control group exhibited increased functional connectivity between these regions throughout HDBR whereas the cAG group showed decreased functional connectivity. This finding suggests that AG alters somatosensory reweighting during HDBR. We also observed brain-behavioral correlations that differed significantly by group. Control group participants who showed increased connectivity between the putamen and somatosensory cortex exhibited greater mobility declines post-HDBR. For the cAG group, increased connectivity between these regions was associated with little to no mobility declines post-HDBR. This suggests that when somatosensory stimulation is provided via AG, functional connectivity increases between the putamen and somatosensory cortex are compensatory in nature, resulting in reduced mobility declines. Given these findings, AG may be an effective countermeasure for the reduced somatosensory stimulation that occurs in both microgravity and HDBR
Impacts of spaceflight experience on human brain structure
Abstract Spaceflight induces widespread changes in human brain morphology. It is unclear if these brain changes differ with varying mission duration or spaceflight experience history (i.e., novice or experienced, number of prior missions, time between missions). Here we addressed this issue by quantifying regional voxelwise changes in brain gray matter volume, white matter microstructure, extracellular free water (FW) distribution, and ventricular volume from pre- to post-flight in a sample of 30 astronauts. We found that longer missions were associated with greater expansion of the right lateral and third ventricles, with the majority of expansion occurring during the first 6Â months in space then appearing to taper off for longer missions. Longer inter-mission intervals were associated with greater expansion of the ventricles following flight; crew with less than 3Â years of time to recover between successive flights showed little to no enlargement of the lateral and third ventricles. These findings demonstrate that ventricle expansion continues with spaceflight with increasing mission duration, and inter-mission intervals less than 3Â years may not allow sufficient time for the ventricles to fully recover their compensatory capacity. These findings illustrate some potential plateaus in and boundaries of human brain changes with spaceflight