31 research outputs found

    The Self-Paced VO2max Test to Assess Maximal Oxygen Uptake in Highly Trained Runners.

    No full text
    PURPOSE The novel self-paced maximal oxygen uptake (VO2max) test (SPV) may be a more suitable alternative to traditional maximal tests for elite athletes due to the ability to self-regulate pace. This study aimed to examine whether the SPV can be administered on a motorised treadmill. METHODS Fourteen highly trained male distance runners performed a standard GXT, an incline-based SPV (SPVinc) and a speed-based SPV (SPVsp). The GXT included a plateau verification stage. Both SPV protocols included 5 x 2 minute stages [and a plateau verification stage] and allowed for self-pacing based on fixed increments of rating of perceived exertion (RPE): 11, 13, 15, 17 and 20. The participants varied their speed/incline on the treadmill by moving between different marked 'zones', in which the tester would then adjust the intensity. RESULTS There was no significant difference (p=0.319, ES=0.21) in the VO2max achieved in the SPVsp (67.6 ± 3.6 mL·kg-1·min-1, 95%CI = 65.6 - 69.7 mL·kg-1·min-1) compared to that achieved in the GXT (68.6 ± 6.0 mL·kg-1·min-1, CI = 65.1 - 72.1 mL·kg-1·min-1). Participants achieved a significantly higher VO2max in the SPVinc (70.6 ± 4.3 mL·kg-1·min-1, 95%CI = 68.1 - 73.0 mL·kg-1·min-1) compared to both the GXT (p=0.027, ES=0.39) and SPVsp (p=0.001, ES=0.76). CONCLUSIONS The SPVsp protocol produces similar VO2max values to those obtained in the GXT and may represent a more appropriate and athlete-friendly test which is more orientated towards the variable speed found in competitive sport
    corecore