9 research outputs found

    Wind tunnel tests of the dynamic characteristics of the fluidic rudder

    Get PDF
    The fourth phase is given of a continuing program to develop the means to stabilize and control aircraft without moving parts or a separate source of power. Previous phases have demonstrated the feasibility of (1) generating adequate control forces on a standard airfoil, (2) controlling those forces with a fluidic amplifier and (3) cascading non-vented fluidic amplifiers operating on ram air supply pressure. The foremost objectives of the fourth phase covered under Part I of this report were to demonstrate a complete force-control system in a wind tunnel environment and to measure its static and dynamic control characteristics. Secondary objectives, covered under Part II, were to evaluate alternate configurations for lift control. The results demonstrate an overall response time of 150 msec, confirming this technology as a viable means for implementing low-cost reliable flight control systems

    Advanced dc motor controller for battery-powered electric vehicles

    Get PDF
    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle

    Design and test of the 172K fluidic rudder

    Get PDF
    Progress in the development of concepts for control of aircraft without moving parts or a separate source of power is described. The design and wind tunnel tests of a full scale fluidic rudder for a Cessna 172K aircraft, intended for subsequent flight tests were documented. The 172K fluidic rudder was designed to provide a control force equivalent to 3.3 degrees of deflection of the conventional rudder. In spite of an extremely thin airfoil, cascaded fluidic amplifiers were built to fit, with the capacity for generating the required level of control force. Wind tunnel tests demonstrated that the principles of lift control using ram air power are sound and reliable under all flight conditions. The tests also demonstrated that the performance of the 172K fluidic rudder is not acceptable for flight tests until the design of the scoop is modified to prevent interference with the lift control phenomenon

    Wind tunnel tests of a symmetrical airfoil with scoop fed slots

    Get PDF
    The design and wind tunnel test of a model vertical tail fin is described in this report. The model is designed to provide the aerodynamic forces necessary for lateral stabilization without moving parts or a separate source of power. It employs scoop-fed slots on both surfaces of the symmetrical airfoil. They are to be controlled differentially by means of a fluidic amplifier to implement an automatic fulltime lateral stabilization system. The results of tests show that the control of forces is stable and quite linear in various modes of operation. Significant forces were produced that can be increased as necessary by increasing slot size and scoop size. Slots can be located ahead of the conventional rudder and the scoop can be at the base of the vertical tail fin to avoid the need for major changes in conventional aircraft design. The first phase of the work demonstrated the feasibility of no-moving-parts aircraft control. The second phase established that a practical fluidic amplifier can be built to control slot flows from fluidic signals. Recommendations are made to optimize the design of the fluidic amplifier and to characterize its dynamic response in support of further analytical studies

    Feasibility and concept study to convert the NASA/AMES vertical motion simulator to a helicopter simulator

    Get PDF
    The conceptual design for converting the vertical motion simulator (VMS) to a multi-purpose aircraft and helicopter simulator is presented. A unique, high performance four degrees of freedom (DOF) motion system was developed to permanently replace the present six DOF synergistic system. The new four DOF system has the following outstanding features: (1) will integrate with the two large VMS translational modes and their associated subsystems; (2) can be converted from helicopter to fixed-wing aircraft simulation through software changes only; (3) interfaces with an advanced cab/visual display system of large dimensions; (4) makes maximum use of proven techniques, convenient materials and off-the-shelf components; (5) will operate within the existing building envelope without modifications; (6) can be built within the specified weight limit and avoid compromising VMS performance; (7) provides maximum performance with a minimum of power consumption; (8) simple design minimizes coupling between motions and maximizes reliability; and (9) can be built within existing budgetary figures

    Fluidic Systems Design

    No full text
    corecore