85 research outputs found

    Disentanglement of orthogonal hydrogen and halogen bonds via natural orbital for chemical valence: A charge displacement analysis

    Get PDF
    As known, the electron density of covalently bound halogen atoms is anisotropically distributed, making them potentially able to establish many weak interactions, acting at the same time as halogen bond donors and hydrogen bond acceptors. Indeed, there are many examples in which the halogen and hydrogen bond coexist in the same structure and, if a correct bond analysis is required, their separation is mandatory. Here, the advantages and limitations of coupling the charge displacement analysis with natural orbital for chemical valence method (NOCV-CD) to separately analyze orthogonal weak interactions are shown, for both symmetric and asymmetric adducts. The methodology gives optimal results with intermolecular adducts but, in the presence of an organometallic complex, also intramolecular interactions can be correctly analyzed. Beyond the methodological aspects, it is shown that correctly separate and quantify the interactions can give interesting chemical insights about the systems

    Monitoring of the pre-equilibrium step in the alkyne hydration reaction catalyzed by au(Iii) complexes: A computational study based on experimental evidences

    Get PDF
    The coordination ability of the [(ppy)Au(IPr)]2+ fragment [ppy = 2-phenylpyridine, IPr = 1,3-bis(2,6-di-isopropylphenyl)-imidazol-2-ylidene] towards different anionic and neutral X ligands (X = Cl 12, BF4 12, OTf 12, H2 O, 2-butyne, 3-hexyne) commonly involved in the crucial pre-equilibrium step of the alkyne hydration reaction is computationally investigated to shed light on unexpected experimental observations on its catalytic activity. Experiment reveals that BF4 12 and OTf 12 have very similar coordination ability towards [(ppy)Au(IPr)]2+ and slightly less than water, whereas the alkyne complex could not be observed in solution at least at the NMR sensitivity. Due to the steric hindrance/dispersion interaction balance between X and IPr, the [(ppy)Au(IPr)]2+ fragment is computationally found to be much less selective than a model [(ppy)Au(NHC)]2+ (NHC = 1,3-dimethylimidazol-2-ylidene) fragment towards the different ligands, in particular OTf 12 and BF4 12, in agreement with experiment. Effect of the ancillary ligand substitution demonstrates that the coordination ability of Au(III) is quantitatively strongly affected by the nature of the ligands (even more than the net charge of the complex) and that all the investigated gold fragments coordinate to alkynes more strongly than H2 O. Remarkably, a stabilization of the water-coordinating species with respect to the alkyne-coordinating one can only be achieved within a microsolvation model, which reconciles theory with experiment. All the results reported here suggest that both the Au(III) fragment coordination ability and its proper computational modelling in the experimental conditions are fundamental issues for the design of efficient catalysts

    Experimental and Theoretical Investigation of Ion Pairing in Gold(III) Catalysts

    Get PDF
    The ion pairing structure of the possible species present in solution during the gold(III)-catalyzed hydration of alkynes: [(ppy)Au(NHC)Y]X2 and [(ppy)Au(NHC)X]X [ppy = 2-phenylpyridine, NHC = NHCiPr = 1,3-bis(2,6-di-isopropylphenyl)-imidazol-2-ylidene; NHC = NHCmes = 1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene X = Cl-, BF4-, OTf-; Y = H2O and 3-hexyne] are determined. The nuclear overhauser effect nuclear magnetic resonance (NMR) experimental measurements integrated with a theoretical description of the system (full optimization of different ion pairs and calculation of the Coulomb potential surface) indicate that the preferential position of the counterion is tunable through the choice of the ancillary ligands (NHCiPr, NHCmes, ppy, and Y) in [(ppy)Au(NHC)(3-hexyne)]X2 activated complexes that undergo nucleophilic attack. The counterion can approach near NHC, pyridine ring of ppy, and gold atom. From these positions, the anion can act as a template, holding water in the right position for the outer-sphere attack, as observed in gold(I) catalysts

    Advances in Charge Displacement Analysis

    No full text
    We define new general density-based descriptors for the quantification of charge transfer and polarization effects associated with the interaction between two fragments and the formation of a chemical bond. Our aim is to provide a simple yet accurate picture of a chemical interaction by condensing the information on the charge rearrangement accompanying it into a few chemically meaningful parameters. These charge displacement (CD) parameters quantify the total charge displaced upon bond formation and decompose it into a charge transfer component between the fragments and charge rearrangements taking place within the fragments. We then show how the new parameters can be easily calculated using the well-known CD function, which describes the charge flow along a chosen axis accompanying the formation of a bond. The approach presented here can be useful in a wide variety of contexts, ranging from weak interactions to electronic excitations to coordination chemistry. In particular, we discuss here how the scheme can be used for the characterization of the donation and back-donation components of metal–ligand bonds, in combination with the natural orbitals for chemical valence (NOCV) theory. In doing so, we discuss the interesting relationship between the proposed parameters and the corresponding NOCV eigenvalues, commonly used as a measure of the electron charge displacement associated with a given bonding contribution. As a prototype case study, we investigate the bond between a N-heterocyclic carbene and different metallic fragments. Finally, we show that our approach can be used in combination with the energy decomposition of the extended transition state method, providing an estimate of both charge transfer and polarization contributions to the interaction energy

    Charge Displacement Analysis-A Tool to Theoretically Characterize the Charge Transfer Contribution of Halogen Bonds

    No full text
    Theoretical bonding analysis is of prime importance for the deep understanding of the various chemical interactions, covalent or not. Among the various methods that have been developed in the last decades, the analysis of the Charge Displacement function (CD) demonstrated to be useful to reveal the charge transfer effects in many contexts, from weak hydrogen bonds, to the characterization of σ hole interactions, as halogen, chalcogen and pnictogen bonding or even in the decomposition of the metal-ligand bond. Quite often, the CD analysis has also been coupled with experimental techniques, in order to give a complete description of the system under study. In this review, we focus on the use of CD analysis on halogen bonded systems, describing the most relevant literature examples about gas phase and condensed phase systems. Chemical insights will be drawn about the nature of halogen bond, its cooperativity and its influence on metal-ligand bond components

    Disentanglement of Donation and Back‐Donation Effects on Experimental Observables: A Case Study of Gold–Ethyne Complexes

    No full text
    A charge‐displacement analysis of gold–ethyne complexes shows the existence of a quantitative relationship between measurable properties and the chemical bond constituents in the Dewar–Chatt–Duncanson model. Through suitable experiments, these constituents may be disentangled and crucial insight into the nature of coordination bonds may thus be gained

    The chemical bond between Au(I) and the noble gases. Comparative study of NgAuF and NgAu(+) (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods

    No full text
    The nature of the chemical bond between gold and the noble gases in the simplest prototype of Au(I) complexes (NgAuF and NgA

    π Activation of Alkynes in Homogeneous and Heterogeneous Gold Catalysis

    No full text
    The activation of alkynes toward nucleophilic attack upon coordination to gold-based catalysts (neutral and positively charged gold clusters and gold complexes commonly used in homogeneous catalysis) is investigated to elucidate the role of the σ donation and π back-donation components of the Au–C bond (where we consider ethyne as prototype substrate). Charge displacement (CD) analysis is used to obtain a well-defined measure of σ donation and π back-donation and to find out how the corresponding charge flows affect the electron density at the electrophilic carbon undergoing the nucleophilic attack. This information is used to rationalize the activity of a series of catalysts in the nucleophilic attack step of a model hydroamination reaction. For the first time, the components of the Dewar–Chatt–Duncanson model, donation and back-donation, are put in quantitative correlation with the kinetic parameters of a chemical reaction

    Ion Pairing in Cationic Olefin-Gold(I) Complexes

    No full text
    The relative anion-cation orientation in [(PPh(3))Au(4-Me-styrene)]BF(4) (1BF(4)) and [(NHC)Au(4-Me-styrene)]BF(4) [2BF(4); NHC = 1,3-bis(di-iso-propylphenyl)-imidazol-2-ylidene] has been investigated by combining (19)F, (1)H-HOESY NMR spectroscopy and Density Functional Theory (DFT) calculations incorporating solvent and relativistic effects. It has been found that BF(4)(-) locates on the side of 4-Me-styrene, close to the olefin region that is opposite to the 4-Me-Ph moiety in 1BF(4). In 2BF(4), the counterion approaches the cation from the side of the NHC ligand and is mainly located close to the imidazole ring. In both cases, the counterion resides far away from the gold site, the latter carrying only a small fraction of the positive charge. This indicates that the preferential position of the counterion is tunable through the choice of the ancillary ligand, and this opens the way to greater control over the properties and activity of these catalysts
    • 

    corecore