44 research outputs found

    Effect of strain rate on the formation of the microstructure of a 1950/10% SiC metal matrix composite under high temperature

    Full text link
    The paper studies the effect of strain rate on the formation of grains and low-angle boundaries in an aluminum matrix composite based on the 1950 alloy (analogous to the AA7075 alloy) with 10 vol% SiC. The deformation of the metal matrix composite, produced by a powder technique, is investigated at a temperature of 500 °C. The specimens are investigated by electron backscatter diffraction before and after deformation at strain rates ranging from 0.1 to 5.5 s-1. It has been established that continuous dynamic recrystallization occurs in the composite at 500 °C in the whole strain rate range considered. The recrystallization is followed by a decrease in the average grain diameter and an increase in the density of the low-angle boundaries with increasing strain rate. © 2017 Author(s).The work was partially financially supported rheological behavior of a metal matrix composite

    Permeability of Magnetic Cores with Air Gaps

    Full text link
    The influence of the geometric dimensions of the cut core and the number and size of air gaps on the effective permeability was investigated. Using dimensional analysis, an equation was obtained that relates the permeability of the cut core to the simplest dimensionless combination of the mean magnetic flux length l, single air gap length lg1, the cross-sectional area S of the core, and gap number ng . Permeability calculated from the geometric parameters of the cut core was compared with the effective permeability obtained using a two-dimensional FEMM simulation. Simulation has shown that the equation derived from dimensional analysis provides the best fit. The influence of each significant parameters l, lg1, ng, and S on cut core permeability is demonstrated. Experimental results have shown that an equation derived from dimensional analysis can be used to predict cut core permeability. In this case, one should take into account the residual air gap that forms after cutting the core. A method for assessing the residual air gap is proposed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Imaging oxygenation of human tumours

    Get PDF
    Tumour hypoxia represents a significant challenge to the curability of human tumours leading to treatment resistance and enhanced tumour progression. Tumour hypoxia can be detected by non-invasive and invasive techniques but the inter-relationships between these remains largely undefined. (18)F-MISO and Cu-ATSM-PET, and BOLD-MRI are the lead contenders for human application based on their non-invasive nature, ease of use and robustness, measurement of hypoxia status, validity, ability to demonstrate heterogeneity and general availability, these techniques are the primary focus of this review. We discuss where developments are required for hypoxia imaging to become clinically useful and explore potential new uses for hypoxia imaging techniques including biological conformal radiotherapy

    Optimum regime of heat treatment of soft magnetic amorphous materials

    Full text link
    The influence of Fe 72.5 Cu 1 Nb 2 Mo 1.5 Si 14 B 9 nanocrystalline alloy annealing temperature on the structure and magnetic properties has been investigated. The heat treatment temperature of nanocrystalline soft magnetic alloy Fe 72.5Cu 1Nb 2Mo 1.5Si 14B 9, which allows reaching the maximum value of the initial magnetic permeability, was found to be 15-20° higher than that ensuring the minimum coercive force. The relation between the numerical values of the coercive force, the initial magnetic permeability and the magnetic hysteresis loop rectangularity factor allows optimizing the mode of nanocrystalline alloy heat treatment. © 2006 IEEE
    corecore