26 research outputs found

    Fatty Acid and Hopanoid Adaption to Cold in the Methanotroph Methylovulum psychrotolerans

    Get PDF
    Three strains of aerobic psychrotolerant methanotrophic bacteria Methylovulum psychrotolerans, isolated from geographically remote low-temperature environments in Northern Russia, were grown at three different growth temperatures, 20, 10 and 4°C and were found to be capable of oxidizing methane at all temperatures. The three M. psychrotolerans strains adapted their membranes to decreasing growth temperature by increasing the percent of unsaturated fatty acid (FAs), both for the bulk and intact polar lipid (IPL)-bound FAs. Furthermore, the ratio of βOH-C16:0 to n-C16:0 increased as growth temperature decreased. The IPL head group composition did not change as an adaption to temperature. The most notable hopanoid temperature adaptation of M. psychrotolerans was an increase in unsaturated hopanols with decreasing temperature. As the growth temperature decreased from 20 to 4°C, the percent of unsaturated M. psychrotolerans bulk-FAs increased from 79 to 89 % while the total percent of unsaturated hopanoids increased from 27 to 49 %. While increased FA unsaturation in response to decreased temperature is a commonly observed response in order to maintain the liquid-crystalline character of bacterial membranes, hopanoid unsaturation upon cold exposition has not previously been described. In order to investigate the mechanisms of both FA and hopanoid cold-adaption in M. psychrotolerans we identified genes in the genome of M. psychrotolerans that potentially code for FA and hopanoid desaturases. The unsaturation of hopanoids represents a novel membrane adaption to maintain homeostasis upon cold adaptation

    Methylocystis bryophila sp. nov., a Novel Facultatively Methanotrophic Bacterium from Acidic Sphagnum Peat, and Emended Description of the Genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993

    No full text
    A new species is proposed for two facultatively methanotrophic representatives of the genus Methylocystis, strains H2sT and S284, which were isolated from an acidic (pH 4.3) Sphagnum peat bog lake (Teufelssee, Germany) and an acidic (pH 3.8) peat bog (European North Russia), respectively. Cells of strains H2sT and S284 are aerobic, Gram-negative, non-motile, curved coccoids or short rods that contain an intracytoplasmic membrane system typical of type II methanotrophs. They possess both a soluble and a particulate methane monooxygenase (MMO); the latter is represented by two isozymes, pMMO1 and pMMO2. The preferred growth substrates are methane and methanol. In the absence of C1 substrates, however, these methanotrophs are capable of slow growth on acetate. Atmospheric nitrogen is fixed by means of an aero-tolerant nitrogenase. Strains H2sT and S284 develop between pH 4.2 and 7.6 (optimum pH 6.0-6.5), and at temperatures between 8 and 37°C (optimum 25-30°C). The major fatty acids are C18:1w8c, C18:1w7c, and C16:1w7c; the major quinone is Q-8. The DNA G+C content is 62.0-62.3 mol%. Strains H2sT and S284 share identical 16S rRNA gene sequences, which displayed 96.6-97.3% similarity to sequences of other taxonomically characterized members of the genus Methylocystis. Therefore, strains H2sT and S284 are classified as a novel species, for which the name Methylocystis bryophila sp. nov. is proposed. Strain H2sT (=DSM 21852T = VKM B-2545T) is the type strain of Methylocystis bryophila.

    <i>Edaphobacter lichenicola</i> sp. nov., a member of the family <i>Acidobacteriaceae</i> from lichen-dominated forested tundra

    No full text
    An isolate of aerobic, Gram-stain-negative, rod-shaped, non-motile and light-pink pigmented bacteria, designated SBC68T, was obtained from slightly decomposed thalli of the lichen Cladonia sp. collected from the forested tundra of north-western Siberia. Cells of this isolate occurred singly, in pairs or in rosettes. These bacteria were acidophilic (optimum growth at pH 4.3–5.6) and mesophilic (optimum growth at 20–30 °C) but were also capable of growth at low temperatures, down to 7 °C. The preferred growth substrates were sugars, some organic acids and lichenan. The major fatty acids were iso-C15 : 0, C16 : 1ω7c, C16 : 0, Cω7t, and 13,16-dimethyl octacosanedioic acid. The only quinone was MK-8, and the G+C content of the DNA was 54.7 mol%. SBC68T represented a member of the family Acidobactericeae; the closest taxonomically described relatives were Edaphobacter dinghuensis DHF9T and Granulicella aggregans TPB6028T (97.2 and 97.1 % 16S rRNA gene sequence similarity, respectively). In 16S rRNA gene-based trees, SBC68T clustered together with species of the genus Edaphobacter . However, this isolate differed from all previously described species of the genus Edaphobacter with respect to the pink pigmentation, formation of cell rosettes and substrate utilization pattern. On the basis of these data, strain SBC68T should be considered to represent a novel species of acidobacteria, for which the name Edaphobacter lichenicola sp. nov. is proposed. The type strain is SBC68T (=DSM 104462T=VKM B-3208T)

    Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp

    No full text
    Representatives of the genus Methylocystis are traditionally considered to be obligately methanotrophic bacteria, which are incapable of growth on multicarbon substrates. Here, we describe a novel member of this genus, strain H2s, which represents a numerically abundant and ecologically important methanotroph population in northern Sphagnum-dominated wetlands. This isolate demonstrates a clear preference for growth on methane but is able to grow slowly on acetate in the absence of methane. Strain H2s possesses both forms of methane monooxygenase (particulate and soluble MMO) and a well-developed system of intracytoplasmic membranes (ICM). In cells grown for several transfers on acetate, these ICM are maintained, although in a reduced form, and mRNA transcripts of particulate MMO are detectable. These cells resume their growth on methane faster than those kept for the same period of time without any substrate. Growth on acetate leads to a major shift in the phospholipid fatty acid composition. The re-examination of all type strains of the validly described Methylocystis species showed that Methylocystis heyeri H2T and Methylocystis echinoides IMET10491T are also capable of slow growth on acetate. This capability might represent an important part of the survival strategy of Methylocystis spp. in environments where methane availability is variable or limited.

    Fatty acid and hopanoid adaption to cold in the methanotroph Methylovulum psychrotolerans

    No full text
    Three strains of aerobic psychrotolerant methanotrophic bacteria Methylovulum psychrotolerans, isolated from geographically remote low-temperature environments in Northern Russia, were grown at three different growth temperatures, 20, 10 and 4∘C and were found to be capable of oxidizing methane at all temperatures. The three M. psychrotolerans strains adapted their membranes to decreasing growth temperature by increasing the percent of unsaturated fatty acid (FAs), both for the bulk and intact polar lipid (IPL)-bound FAs. Furthermore, the ratio of βOH-C16:0 to n-C16:0 increased as growth temperature decreased. The IPL head group composition did not change as an adaption to temperature. The most notable hopanoid temperature adaptation of M. psychrotolerans was an increase in unsaturated hopanols with decreasing temperature. As the growth temperature decreased from 20 to 4∘C, the percent of unsaturated M. psychrotolerans bulk-FAs increased from 79 to 89 % while the total percent of unsaturated hopanoids increased from 27 to 49 %. While increased FA unsaturation in response to decreased temperature is a commonly observed response in order to maintain the liquid-crystalline character of bacterial membranes, hopanoid unsaturation upon cold exposition has not previously been described. In order to investigate the mechanisms of both FA and hopanoid cold-adaption in M. psychrotolerans we identified genes in the genome of M. psychrotolerans that potentially code for FA and hopanoid desaturases. The unsaturation of hopanoids represents a novel membrane adaption to maintain homeostasis upon cold adaptation. © 2019 Bale, Rijpstra, Sahonero-Canavesi, Oshkin, Belova, Dedysh and Sinninghe Damsté. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

    Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing signature fatty acids of type I methanotrophs

    No full text
    A novel species is proposed for two strains of methanotrophic bacteria (H2T and Sakb1) isolated from an acidic (pH 4.3) Sphagnum peat bog lake (Teufelssee, Germany) and an acidic (pH 4.2) tropical forest soil (Thailand), respectively. Cells of strains H2T and Sakb1 were aerobic, Gram-negative, non-motile, straight or curved rods that were covered by large polysaccharide capsules and contained an intracytoplasmic membrane system typical of type II methanotrophs. They possessed both a particulate and a soluble methane monooxygenase and utilized the serine pathway for carbon assimilation. They were moderately acidophilic organisms capable of growth between pH 4.4 and 7.5 (optimum 5.8–6.2). The most unique characteristic of these strains was the phospholipid fatty acid profile. In addition to the signature fatty acid of type II methanotrophs (18 : 18c), the cells also contained large amounts of what was previously considered to be a signature fatty acid of type I methanotrophs, 16 : 18c. The DNA G+C contents of strains H2T and Sakb1 were 61.5 and 62.1 mol%, respectively. The 16S rRNA gene sequences possessed 96–98 % similarity to sequences of other type II methanotrophs in the genera Methylosinus and Methylocystis. 16S rRNA gene sequence and pmoA phylogeny demonstrated that the strains form a novel lineage within the genus Methylocystis. DNA–DNA hybridization values of strain H2T with Methylocystis parvus OBBPT and Methylocystis echinoides IMET 10491T were 18 and 25 %, respectively. Thus, it is proposed that these two strains represent a novel species, Methylocystis heyeri sp. nov. Strain H2T (=DSM 16984T=VKM B-2426T) is the type strain
    corecore