21 research outputs found

    The BRAF Inhibitor Vemurafenib Activates Mitochondrial Metabolism and Inhibits Hyperpolarized Pyruvate–Lactate Exchange in BRAF-Mutant Human Melanoma Cells

    Full text link
    Understanding the impact of BRAF signaling inhibition in human melanoma on key disease mechanisms is important for developing biomarkers of therapeutic response and combination strategies to improve long-term disease control. This work investigates the downstream metabolic consequences of BRAF inhibition with vemurafenib, the molecular and biochemical processes that underpin them, their significance for antineoplastic activity, and potential as noninvasive imaging response biomarkers. H-1 NMR spectroscopy showed that vemurafenib decreases the glycolytic activity of BRAF-mutant (WM266.4 and SKMEL28) but not BRAF(WT) (CHL-1 and D04) human melanoma cells. In WM266.4 cells, this was associated with increased acetate, glycine, and myo-inositol levels and decreased fatty acyl signals, while the bioenergetic status was maintained. C-13 NMR metabolic flux analysis of treated WM266.4 cells revealed inhibition of de novo lactate synthesis and glucose utilization, associated with increased oxidative and anaplerotic pyruvate carboxylase mitochondrial metabolism and decreased lipid synthesis. This metabolic shift was associated with depletion of hexokinase 2, acyl-CoA dehydrogenase 9, 3-phosphoglycerate dehydrogenase, and monocarboxylate transporters (MCT) 1 and 4 in BRAF-mutant but not BRAF(WT) cells and, interestingly, decreased BRAF-mutant cell dependency on glucose and glutamine for growth. Further, the reduction in MCT1 expression observed led to inhibition of hyperpolarized C-13-pyruvatelactate exchange, a parameter that is translatable to in vivo imaging studies, in live WM266.4 cells. In conclusion, our data provide new insights into the molecular and metabolic consequences of BRAF inhibition in BRAF-driven human melanoma cells that may have potential for combinatorial therapeutic targeting as well as noninvasive imaging of response. (C) 2016 AACR

    Investigation of MRS detectable markers of 'ras' transformation

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    MEK1/2 Inhibition Decreases Lactate in BRAF-Driven Human Cancer Cells

    No full text
    Abstract The RAS/BRAF/MEK/ERK signaling pathway is a central driver in cancer with many BRAF and MEK inhibitors being evaluated in clinical trials. Identifying noninvasive biomarkers of early pharmacodynamic responses is important for development of these targeted drugs. As increased aerobic glycolysis is often observed in cancer, we hypothesized that MEK1/2 (MAP2K1/MAP2K2) inhibitors may reduce lactate levels as detected by magnetic resonance spectroscopy (MRS), as a metabolic biomarker for the pharmacodynamic response. MRS was used to monitor intracellular and extracellular levels of lactate in human cancer cells in vitro and in melanoma tumors ex vivo. In addition, we used 1H MRS and a fluorescent glucose analog to evaluate the effect of MEK inhibition on glucose uptake. MEK1/2 signaling inhibition reduced extracellular lactate levels in BRAF-dependent cells but not BRAF-independent cells. The reduction in extracellular lactate in BRAF-driven melanoma cells was time-dependent and associated with reduced expression of hexokinase-II driven by c-Myc depletion. Taken together, these results reveal how MEK1/2 inhibition affects cancer cell metabolism in the context of BRAF oncogene addiction. Furthermore, they offer a preclinical proof-of-concept for the use of MRS to measure lactate as a noninvasive metabolic biomarker for pharmacodynamic response to MEK1/2 inhibition in BRAF-driven cancers. Cancer Res; 73(13); 4039–49. ©2013 AACR.</jats:p

    MCT1 Inhibitor AZD3965 Increases Mitochondrial Metabolism, Facilitating Combination Therapy and Noninvasive Magnetic Resonance Spectroscopy

    No full text
    Monocarboxylate transporters (MCT) modulate tumor cell metabolism and offer promising therapeutic targets for cancer treatment. Understanding the impact of MCT blockade on tumor cell metabolism may help develop combination strategies or identify pharmacodynamic biomarkers to support the clinical development of MCT inhibitors now in clinical trials. In this study, we assessed the impact of the MCT1 inhibitor AZD3965 on cancer cell metabolism in vitro and in vivo. Exposing human lymphoma and colon carcinoma cells to AZD3965 increased MCT4-dependent accumulation of intracellular lactate, inhibiting monocarboxylate influx and efflux. AZD3965 also increased the levels of TCA cycle-related metabolites and C-13-glucose mitochondrial metabolism, enhancing oxidative pyruvate dehydrogenase and anaplerotic pyruvate carboxylase fluxes. Increased mitochondrial metabolism was necessary to maintain cell survival under drug stress. These effects were counteracted by coadministration of the mitochondrial complex I inhibitor metformin and the mitochondrial pyruvate carrier inhibitor UK5099. Improved bioenergetics were confirmed in vivo after dosing with AZD3965 in mouse xenograft models of human lymphoma. Our results reveal new metabolic consequences of MCT1 inhibition that might be exploited for therapeutic and pharmacodynamic purposes. (C) 2017 AACR
    corecore