29 research outputs found

    Effects of enamel matrix derivative and transforming growth factor-β1 on human osteoblastic cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD), TGF-β1, and the combination of both factors (EMD+TGF-β1) on human osteoblastic cell cultures.</p> <p>Methods</p> <p>Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP), osteopontin (OPN) and alkaline phosphatase (ALP) immunodetection, total protein synthesis, ALP activity and bone-like nodule formation.</p> <p>Results</p> <p>All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group.</p> <p>Conclusions</p> <p>The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors <it>in vitro </it>supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.</p

    Sheets of vertically aligned BaTiO<sub>3</sub> nanotubes reduce cell proliferation but not viability of NIH-3T3 cells

    Get PDF
    All biomaterials initiate a tissue response when implanted in living tissues. Ultimately this reaction causes fibrous encapsulation and hence isolation of the material, leading to failure of the intended therapeutic effect of the implant. There has been extensive bioengineering research aimed at overcoming or delaying the onset of encapsulation. Nanotechnology has the potential to address this problem by virtue of the ability of some nanomaterials to modulate interactions with cells, thereby inducing specific biological responses to implanted foreign materials. To this effect in the present study, we have characterised the growth of fibroblasts on nano-structured sheets constituted by BaTiO3, a material extensively used in biomedical applications. We found that sheets of vertically aligned BaTiO3 nanotubes inhibit cell cycle progression - without impairing cell viability - of NIH-3T3 fibroblast cells. We postulate that the 3D organization of the material surface acts by increasing the availability of adhesion sites, promoting cell attachment and inhibition of cell proliferation. This finding could be of relevance for biomedical applications designed to prevent or minimize fibrous encasement by uncontrolled proliferation of fibroblastic cells with loss of material-tissue interface underpinning long-term function of implants

    The effects of a SiO 2

    No full text

    Um novo fio de aço inoxidável para aplicações ortodônticas A new stainless steel wire for orthodontic purposes

    No full text
    OBJETIVO: desenvolver uma metodologia para fabricação de fios ortodônticos de aço inoxidável austeno-ferrítico SEW 410 Nr. 14517 por meio dos processos convencionais de laminação e trefilação. MÉTODOS: o aço austeno-ferrítico foi elaborado em um forno elétrico de indução. A qualidade dos fios foi avaliada por ensaios de tração e medidas de microdureza. A ductilidade e a manuseabilidade foram analisadas por meio da confecção de componentes ortodônticos. RESULTADOS E CONCLUSÕES: os valores encontrados mostraram que os fios de aço inoxidável austeno-ferrítico atenderam às normas BS 3507:1976 e ISO 5832-1, e apresentaram ótima ductilidade para confecção de componentes ortodônticos com dobras complexas.<br>OBJECTIVE: To develop a method to manufacture austenitic-ferritic stainless steel orthodontic wires (SEW 410 Nr. 14517) using conventional rolling and wiredrawing processes. METHODS: Austenitic-ferritic steel was produced in an induction furnace. Traction trials and microhardness measurements were used to evaluate wire quality. Orthodontic parts were fabricated to assess ductility and malleability. RESULTS AND CONCLUSIONS: Austenitic-ferritic stainless steel wires meet the BS 3507:1976 and ISO 5832-1 norms and have excellent ductility for the fabrication of orthodontic parts with complex folds
    corecore