80 research outputs found

    Liposomes loaded with quantum dots for ultrasensitive on-site determination of aflatoxin M1 in milk products

    Get PDF
    A quantitative fluorescence-labeled immunosorbent assay and qualitative on-site column tests were developed for the determination of aflatoxin M1 in milk products. The use of liposomes loaded with quantum dots as a label significantly increased the assay sensitivity by encapsulating multiple quantum dots in a single liposome and, therefore, amplifying the analytical signal. Two different techniques were compared to obtain aflatoxin-protein conjugates, used for further coupling with the liposomes. The influence of nonspecific interactions of the liposome-labeled conjugates obtained with the surface of microtiter plates and column cartridges was evaluated and discussed. The limit of detection for fluorescence-labeled immunosorbent assay was 0.014 mu g kg(-1). For qualitative on-site tests, the cutoff was set at 0.05 mu g kg(-1), taking into account the EU maximum level for aflatoxin M1 in raw milk, heat-treated milk, and milk for the manufacture of milk-based products. The direct addition of labeled conjugate to the milk samples resulted in an additional decrease of analysis time. An intralaboratory validation was performed with sterilized milk and cream samples artificially spiked with aflatoxin M1 at concentrations less than, equal to and greater than the cutoff level. It is shown that milk products can be analyzed without any sample preparation, just diluted with the buffer. The rates for false-positive and false-negative results were below 5 % (2.6 % and 3.3 %, respectively)

    Capacitive sensing of N-formylamphetamine based on immobilized molecular imprinted polymers

    Get PDF
    A highly sensitive, capacitive biosensor was developed to monitor trace amounts of an amphetamine precursor in aqueous samples. The sensing element is a gold electrode with molecular imprinted polymers (MIPs) immobilized on its surface. A continuous-flow system with timed injections was used to simulate flowing waterways, such as sewers, springs, rivers, etc., ensuring wide applicability of the developed product. MIPs, implemented as a recognition element due to their stability under harsh environmental conditions, were synthesized using thermo-and UV-initiated polymerization techniques. The obtained particles were compared against commercially.,available MIPs according to specificity and selectivity metrics; commercial MIPs were characterized by quite broad cross-reactivity to other structurally related amphetamine-type stimulants. After the best batch of MIPs was chosen, different strategies for immobilizing them on the gold electrode's surface were evaluated, and their stability was also verified. The complete, developed system was validated through analysis of spiked samples. The limit of detection (LOD) for N-formylamphetamine was determined to be 10 mu M in this capacitive biosensor system. The obtained results indicate future possible applications of this MIPs-based capacitive biosensor for environmental and forensic analysis. To the best of our knowledge there are no existing MIPs-based sensors toward amphetamine-type stimulants (ATS)

    Capacitive sensing of an amphetamine drug precursor in aqueous samples : application of novel molecularly imprinted polymers for benzyl methyl ketone detection

    Get PDF
    Highly selective molecularly imprinted polymers (MIPs) towards benzyl methyl ketone (BMK) were synthesized for application as recognition elements in a capacitive sensor. A computational approach was employed to select the most appropriate monomers and cross-linkers. Using the selected compounds, different polymerization techniques and protocols were compared in order to study the effect on the MIP performance and characteristics. MIPs synthesized by bulk polymerization using itaconic acid and 1-vinylimidazole as monomers and pdivinylbenzene as cross-linker possess the highest affinity towards the target analyte. Prior to capacitive analysis, the developed particles were immobilized on the surface of gold transducers using tyramine as a linker. The validity of the developed sensor was checked by the BMK detection in spiked tap water and real water samples. A linear working range from 50 to 1000 mu M was found while the limit of detection (LOD) was determined to be 1 mu M in tap water. To the best of our knowledge, both the developed MIPs towards BMK and the electrochemical sensor for its detection have not been published or marketed to date
    corecore