34 research outputs found

    Multi-source data assimilation for physically based hydrological modeling of an experimental hillslope

    Get PDF
    Data assimilation has recently been the focus of much attention for integrated surface–subsurface hydrological models, whereby joint assimilation of water table, soil moisture, and river discharge measurements with the ensemble Kalman filter (EnKF) has been extensively applied. Although the EnKF has been specifically developed to deal with nonlinear models, integrated hydrological models based on the Richards equation still represent a challenge, due to strong nonlinearities that may significantly affect the filter performance. Thus, more studies are needed to investigate the capabilities of the EnKF to correct the system state and identify parameters in cases where the unsaturated zone dynamics are dominant, as well as to quantify possible tradeoffs associated with assimilation of multi-source data. Here, the CATHY (CATchment HYdrology) model is applied to reproduce the hydrological dynamics observed in an experimental two-layered hillslope, equipped with tensiometers, water content reflectometer probes, and tipping bucket flow gages to monitor the hillslope response to a series of artificial rainfall events. Pressure head, soil moisture, and subsurface outflow are assimilated with the EnKF in a number of scenarios and the challenges and issues arising from the assimilation of multi-source data in this real-world test case are discussed. Our results demonstrate that the EnKF is able to effectively correct states and parameters even in a real application characterized by strong nonlinearities. However, multi-source data assimilation may lead to significant tradeoffs: the assimilation of additional variables can lead to degradation of model predictions for other variables that are otherwise well reproduced. Furthermore, we show that integrated observations such as outflow discharge cannot compensate for the lack of well-distributed data in heterogeneous hillslopes.</p

    Long‐Term Monitoring of Coupled Vegetation and Elevation Changes in Response to Sea Level Rise in a Microtidal Salt Marsh

    Get PDF
    Tight interplays between physical and biotic processes in tidal salt marshes lead to self-organization of halophytic vegetation into recurrent zonation patterns developed across elevation gradients. Despite its importance for marsh ecomorphodynamics, however, the response of vegetation zonation to changing environmental forcings remains difficult to predict, mostly because of lacking long-term field observations of vegetation evolution in the face of changing rates of sea level rise and marsh vertical accretion. Here we present novel data of coupled marsh elevation-vegetation distribution collected in the microtidal Venice Lagoon (Italy) over nearly two decades. Our results suggest that: (a) despite increasing absolute marsh elevations (i.e., above a fixed datum), vertical accretion rates across most of the studied marsh were not high enough to compensate for relative sea-level rise (RSLR), thus leading to a progressive marsh drowning; (b) accretion rates ranging 1.7–4.3 mm/year are overall lower than the measured RSLR rate (4.4 mm/year) and strongly site-specific. Accretion rates vary largely at sites within distances of a few tens of meters, being controlled by local elevation and sediment availability from eroding marsh edges; (c) vegetation responds species-specifically to changes in environmental forcings by modifying species-preferential elevation ranges. For the first time, we observe the consistency of a sequential vegetation-species zonation with increasing marsh elevations over 20 years. We suggest this is the signature of vegetation resilience to changes in external forcings. Our results highlight a strong coupling between geomorphological and ecological dynamics and call for spatially distributed marsh monitoring and spatially explicit biomorphodynamic models of marsh evolution

    The predictive and prognostic potential of plasma telomerase reverse transcriptase (TERT) RNA in rectal cancer patients

    Get PDF
    Background: Preoperative chemoradiotherapy (CRT) followed by surgery is the standard care for locally advanced rectal cancer, but tumour response to CRT and disease outcome are variable. The current study aimed to investigate the effectiveness of plasma telomerase reverse transcriptase (TERT) levels in predicting tumour response and clinical outcome. Methods: 176 rectal cancer patients were included. Plasma samples were collected at baseline (before CRT\ubcT0), 2 weeks after CRT was initiated (T1), post-CRT and before surgery (T2), and 4\u20138 months after surgery (T3) time points. Plasma TERT mRNA levels and total cell-free RNA were determined using real-time PCR. Results: Plasma levels of TERT were significantly lower at T2 (Po0.0001) in responders than in non-responders. Post-CRT TERT levels and the differences between pre- and post-CRT TERT levels independently predicted tumour response, and the prediction model had an area under curve of 0.80 (95% confidence interval (CI) 0.73\u20130.87). Multiple analysis demonstrated that patients with detectable TERT levels at T2 and T3 time points had a risk of disease progression 2.13 (95% CI 1.10\u20134.11)-fold and 4.55 (95% CI 1.48\u201313.95)-fold higher, respectively, than those with undetectable plasma TERT levels. Conclusions: Plasma TERT levels are independent markers of tumour response and are prognostic of disease progression in rectal cancer patients who undergo neoadjuvant therapy

    Non-Neutral Vegetation Dynamics

    Get PDF
    The neutral theory of biodiversity constitutes a reference null hypothesis for the interpretation of ecosystem dynamics and produces relatively simple analytical descriptions of basic system properties, which can be easily compared to observations. On the contrary, investigations in non-neutral dynamics have in the past been limited by the complexity arising from heterogeneous demographic behaviours and by the relative paucity of detailed observations of the spatial distribution of species diversity (beta-diversity): These circumstances prevented the development and testing of explicit non-neutral mathematical descriptions linking competitive strategies and observable ecosystem properties. Here we introduce an exact non-neutral model of vegetation dynamics, based on cloning and seed dispersal, which yields closed-form characterizations of beta-diversity. The predictions of the non-neutral model are validated using new high-resolution remote-sensing observations of salt-marsh vegetation in the Venice Lagoon (Italy). Model expressions of beta-diversity show a remarkable agreement with observed distributions within the wide observational range of scales explored (5⋅10(−1) mĂ·10(3) m). We also consider a neutral version of the model and find its predictions to be in agreement with the more limited characterization of beta-diversity typical of the neutral theory (based on the likelihood that two sites be conspecific or heterospecific, irrespective of the species). However, such an agreement proves to be misleading as the recruitment rates by propagules and by seed dispersal assumed by the neutral model do not reflect known species characteristics and correspond to averages of those obtained under the more general non-neutral hypothesis. We conclude that non-neutral beta-diversity characterizations are required to describe ecosystem dynamics in the presence of species-dependent properties and to successfully relate the observed patterns to the underlying processes

    On the drainage density of tidal networks

    No full text
    [1] The drainage density of a network is conventionally defined as (proportional to) the ratio of its total channelized length divided by the watershed area, and in practice, it is defined by the statistical distribution and correlation structure of the lengths of unchanneled pathways. In tidal networks this requires the definition of suitable drainage directions defined by hydrodynamic (as opposed to topographic) gradients. In this paper we refine theoretically and observationally previous analyses on the drainage density of tidal networks developed within tidal marshes. The issue is quite relevant for predictions of the morphological evolution of lagoons and coastal wetlands, especially if undergoing rapid changes owing, say, to combined effects of subsidence and sea level rise. We analyze 136 watersheds within 20 salt marshes from the northern lagoon of Venice using accurate aerial photographs and field surveys taken in different years in order to study both their space and time variability. Remarkably, the tidal landforms studied show quite different physical and ecological characteristics. We find a clear tendency to develop characteristic watersheds described by exponential decays of the probability distributions of unchanneled lengths, and thereby a pointed absence of scale-free distributions whic

    Geomorphological properties of a lagoonal system

    No full text
    Analyses of the observational morphological structure of a lagoonal landscape are performed aimed at examining key assumptions on the geomorphological evolution of wetlands, lagoons, estuarine areas and tidal environments in general. The present note briefly refers about analysis (Feola et al. 2005) regarding statistical measures, morphodynamic implications of topological or metric properties of the observed landforms. In order to accurately characterize morphodynamic features of a lagoonal environment with particular attention to their scale-dependent (or invariant) characters, field surveys and remote sensing are employed.The structure of landscape-forming shear stresses is calculated in unchanneled portions of the landscape suggesting the viability of threshold models of incision for the formation of tidal channel networks. Distinctive geomorphic indicators, suitable for comparative purposes with modelling of the long term evolution of tidal systems, are also pointed out. Space-distributed analyses of eco-geomorphological properties which strongly suggest the dominance of sub-vertical processes in the control of the distribution of halophytic vegetation are finally discussed

    Environmental forcing and density-dependent controls of Culex pipiens abundance in a temperate climate (Northeastern Italy)

    No full text
    none6siNew and old mosquito-borne diseases have emerged and re-emerged in temperate regions over the recent past, but a mechanistic understanding of mosquito population dynamics, a fundamental step toward disease control, remains elusive. We propose here a Gompertz-based approach to address two obstacles to the development of vector dynamics models in temperate regions: (i) the inclusion of endogenous processes (e.g. density limitation, delayed responses, etc.) and the evaluation of their relative importance vs. exogenous environmental forcings; (ii) the inclusion of realistic descriptions of hydrologic processes and the evaluation of soil moisture as a more direct driver of mosquito population dynamics. The new model is based on a hierarchical state-space structure and is applied to the description of the abundance of Culex pipiens - a West Nile Virus vector - in the Po River Delta region (Northeastern Italy), using weekly mosquito abundance observations at more than 20 sites in the period May-September in 2010 and 2011. The hierarchical structure provides an efficient way of fully exploiting the information from a large network of observation sites. We find that Cx. pipiens abundance has significant density dependence at the one-week scale, which is coherent with its larval developmental time during the summer. This result points to the importance of endogenous population dynamics, most often neglected in mosquito population models, usually simply driven by exogenous environmental forcings. Among exogenous controls, temperature, daylight hours, and soil moisture were found to be most influential. Use of precipitation or soil moisture to force the model leads to very similar predictive skills. The negative correlation of soil moisture and mosquito population may be attributed to the abundance of water in the region (e.g. due to irrigation) and the preference for eutrophic habitats by Cx. pipiens. Variations among sites were highly correlated with land-use factors. The carrying capacity is seen to decrease with the distance to the nearest rice field, while the maximum population growth rate was positively related with the Normalized Difference Vegetation Index, a proxy of vegetation cover. The model shows a satisfactory performance in explaining the variation of mosquito abundance over a horizon of 1 week, particularly as far as peak timing and magnitude are concerned. Large rates of change of population abundance remain difficult to predict, as in other existing models, pointing to persisting gaps in our understanding of the mechanisms regulating mosquito population dynamics. © 2013 Elsevier B.V.noneJian Y.; Silvestri S.; Belluco E.; Saltarin A.; Chillemi G.; Marani M.Jian Y.; Silvestri S.; Belluco E.; Saltarin A.; Chillemi G.; Marani M
    corecore