325 research outputs found

    Energy nonequipartition in a sheared granular mixture

    Full text link
    The kinetic granular temperatures of a binary granular mixture in simple shear flow are determined from the Boltzmann kinetic theory by using a Sonine polynomial expansion. The results show that the temperature ratio is clearly different from unity (as may be expected since the system is out of equilibrium) and strongly depends on the restitution coefficients as well as on the parameters of the mixture. The approximate analytical calculations are compared with those obtained from Monte Carlo simulations of the Boltzmann equation showing an excellent agreement over the range of parameters investigated. Finally, the influence of the temperature differences on the rheological properties is also discussed.Comment: 3 figure

    A womanā€™s place is in theatre: womenā€™s perceptions and experiences of working in surgery from the Association of Surgeons of Great Britain and Ireland Women in Surgery working group

    Get PDF
    Objective: Surgery remains an inherently male-dominated profession. The aim of this study was to survey women working within the discipline, to understand their current perceptions, providing insight into their practical day-to-day lives, supporting an action-oriented change. Design and Setting: The link to a confidential, on-line survey was distributed through the Association of Surgery of Great Britain and Ireland (ASGBI) social media platforms on Facebook and Twitter over a two-week period in October 2017. Participants: Women working in surgical specialties and actively responding to the link shared through the ASGBI social media platforms. No patients were involved in the study. Primary and Secondary Outcome measures: Data were analysed through a mixed methods approach. The quantitative data was analysed through descriptive statistics and qualitative analysis was undertaken using a constant comparative analysis of the participantsā€™ comments, to identify salient patterns (themes). Results: A total of 81 female participants replied (42% response rate based on the Facebook group members), with 88% (n=71) perceiving surgery as a male-dominated field. Over half had experienced discrimination (59%, n=47), whilst 22% (n=18) perceived a ā€˜glass ceilingā€™ in surgical training. Orthopaedics was reported as the most sexist surgical specialty by 53% (n=43). Accounts of gendered language in the workplace were reported by 59% (n=47), with 32% (n=25) of surveys participants having used it. Overall, a lack of formal mentorship, inflexibility towards part-time careers, gender stereotypes and poor work-life balance were the main perceived barriers for women in surgical careers. Conclusion: These findings highlight the implicit nature of the perceived discrimination that women report in their surgical careers. The ASGBI acknowledges these perceptual issues and relative implications as the first of many steps to create an action-oriented change by allowing all staff, regardless of gender, to reflect on their own behaviour, perceptions and the culture in which they work

    ETHYLENE RESPONSE FACTOR 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis

    Get PDF
    Adventitious root initiation (ARI) is ade novoorganogenesis program and a key adaptive trait in plants. Several hormones regulate ARI but the underlying genetic architecture that integrates the hormonal crosstalk governing this process remains largely elusive. In this study, we use genetics, genome editing, transcriptomics, hormone profiling and cell biological approaches to demonstrate a crucial role played by the APETALA2/ETHYLENE RESPONSE FACTOR 115 transcription factor. We demonstrate that ERF115 functions as a repressor of ARI by activating the cytokinin (CK) signaling machinery. We also demonstrate thatERF115is transcriptionally activated by jasmonate (JA), an oxylipin-derived phytohormone, which represses ARI in NINJA-dependent and independent manners. Our data indicate that NINJA-dependent JA signaling in pericycle cells blocks early events of ARI. Altogether, our results reveal a previously unreported molecular network involving cooperative crosstalk between JA and CK machineries that represses ARI

    Single-Step Production of a Recyclable Nanobiocatalyst for Organophosphate Pesticides Biodegradation Using Functionalized Bacterial Magnetosomes

    Get PDF
    Enzymes are versatile catalysts in laboratories and on an industrial scale; improving their immobilization would be beneficial to broadening their applicability and ensuring their (re)use. Lipid-coated nano-magnets produced by magnetotactic bacteria are suitable for a universally applicable single-step method of enzyme immobilization. By genetically functionalizing the membrane surrounding these magnetite particles with a phosphohydrolase, we engineered an easy-to-purify, robust and recyclable biocatalyst to degrade ethyl-paraoxon, a commonly used pesticide. For this, we genetically fused the opd gene from Flavobacterium sp. ATCC 27551 encoding a paraoxonase to mamC, an abundant protein of the magnetosome membrane in Magnetospirillum magneticum AMB-1. The MamC protein acts as an anchor for the paraoxonase to the magnetosome surface, thus producing magnetic nanoparticles displaying phosphohydrolase activity. Magnetosomes functionalized with Opd were easily recovered from genetically modified AMB-1 cells: after cellular disruption with a French press, the magnetic nanoparticles are purified using a commercially available magnetic separation system. The catalytic properties of the immobilized Opd were measured on ethyl-paraoxon hydrolysis: they are comparable with the purified enzyme, with Km (and kcat) values of 58 ĀµM (and 178 sāˆ’1) and 43 ĀµM (and 314 sāˆ’1) for the immobilized and purified enzyme respectively. The Opd, a metalloenzyme requiring a zinc cofactor, is thus properly matured in AMB-1. The recycling of the functionalized magnetosomes was investigated and their catalytic activity proved to be stable over repeated use for pesticide degradation. In this study, we demonstrate the easy production of functionalized magnetic nanoparticles with suitably genetically modified magnetotactic bacteria that are efficient as a reusable nanobiocatalyst for pesticides bioremediation in contaminated effluents

    The AINTEGUMENTA LIKE1

    Full text link
    Adventitious rooting is an essential but sometimes rate-limiting step in the clonal multiplication of elite tree germplasm, because the ability to form roots declines rapidly with age in mature adult plant tissues. In spite of the importance of adventitious rooting, the mechanism behind this developmental process remains poorly understood. We have described the transcriptional profiles that are associated with the developmental stages of adventitious root formation in the model tree poplar (Populus trichocarpa). Transcriptome analyses indicate a highly specific temporal induction of the AINTEGUMENTA LIKE1 (PtAIL1) transcription factor of the AP2 family during adventitious root formation. Transgenic poplar samples that overexpressed PtAIL1 were able to grow an increased number of adventitious roots, whereas RNA interference mediated the down-expression of PtAIL1 expression, which led to a delay in adventitious root formation. Microarray analysis showed that the expression of 15 genes, including the transcription factors AGAMOUS-Like6 and MYB36, was overexpressed in the stem tissues that generated root primordia in PtAIL1-overexpressing plants, whereas their expression was reduced in the RNA interference lines. These results demonstrate that PtAIL1 is a positive regulator of poplar rooting that acts early in the development of adventitious roots

    A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions

    Get PDF
    The availability of a comprehensive set of resources including an entire annotated reference genome, sequenced alternative accessions, and a multitude of marker systems makes Arabidopsis thaliana an ideal platform for genetic mapping. PCR markers based on INsertions/DELetions (INDELs) are currently the most frequently used polymorphisms. For the most commonly used mapping combination, ColumbiaƗLandsberg erecta (Col-0ƗLer-0), the Cereon polymorphism database is a valuable resource for the generation of polymorphic markers. However, because the number of markers available in public databases for accessions other than Col-0 and Ler-0 is extremely low, mapping using other accessions is far from straightforward. This issue arose while cloning mutations in the Wassilewskija (Ws-4) background. In this work, approaches are described for marker generation in Ws-4 x Col-0. Complementary strategies were employed to generate 229 INDEL markers. Firstly, existing Col-0/Ler-0 Cereon predicted polymorphisms were mined for transferability to Ws-4. Secondly, Ws-0 ecotype Illumina sequence data were analyzed to identify INDELs that could be used for the development of PCR-based markers for Col-0 and Ws-4. Finally, shotgun sequencing allowed the identification of INDELs directly between Col-0 and Ws-4. The polymorphism of the 229 markers was assessed in seven widely used Arabidopsis accessions, and PCR markers that allow a clear distinction between the diverged Ws-0 and Ws-4 accessions are detailed. The utility of the markers was demonstrated by mapping more than 35 mutations in a Col-0ƗWs-4 combination, an example of which is presented here. The potential contribution of next generation sequencing technologies to more traditional map-based cloning is discussed
    • ā€¦
    corecore