839 research outputs found

    Evolution of a physical and biological front from upwelling to relaxation

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Continental Shelf Research 108 (2015): 55-64, doi:10.1016/j.csr.2015.08.005.Fronts influence the structure and function of coastal marine ecosystems. Due to the complexity and dynamic nature of coastal environments and the small scales of frontal gradient zones, frontal research is difficult. To advance this challenging research we developed a method enabling an autonomous underwater vehicle (AUV) to detect and track fronts, thereby providing high-resolution observations in the moving reference frame of the front itself. This novel method was applied to studying the evolution of a frontal zone in the coastal upwelling environment of Monterey Bay, California, through a period of variability in upwelling intensity. Through 23 frontal crossings in four days, the AUV detected the front using real-time analysis of vertical thermal stratification to identify water types and the front between them, and the vehicle tracked the front as it moved more than 10 km offshore. The physical front coincided with a biological front between strongly stratified phytoplankton-enriched water inshore of the front, and weakly stratified phytoplankton-poor water offshore of the front. While stratification remained a consistent identifier, conditions on both sides of the front changed rapidly as regional circulation responded to relaxation of upwelling winds. The offshore water type transitioned from relatively cold and saline upwelled water to relatively warm and fresh coastal transition zone water. The inshore water type exhibited an order of magnitude increase in chlorophyll concentrations and an associated increase in oxygen and decrease in nitrate. It also warmed and freshened near the front, consistent with the cross-frontal exchange that was detected in the high-resolution AUV data. AUV-observed cross-frontal exchanges beneath the surface manifestation of the front emphasize the importance of AUV synoptic water column surveys in the frontal zone.This work was supported by the David and Lucile Packard Foundation

    Nutrient transporter expression in both the placenta and fetal liver are affected by maternal smoking

    Get PDF
    ACKNOWLEGDEMENTS Authors would like to thank the nurses of ward 309 (Aberdeen Royal Infirmary) for consenting participants and NHS Grampian Biorepository staff. Also, Gary Cameron for performing the LC-MS/MS cotinine analyses and Ms Linda Robertson for technical assistance. The authors state there are no conflicts of interest. Author contributions: NW, PF and PAF designed the research; NW conducted research, analysed data and wrote paper; PAF responsible for ethics (SAFeR study). All authors read and approved the final manuscript. Authors would like to thank the study funders: Glasgow Children’s Hospital Charity YRSS/PHD/2016/05 and UK Medical Research Council: MR/L010011/1, to PAF & PJOS and MR/P011535/1 to PAF. The funders played no role in the conduct, analysis or publication of the studyPeer reviewedPublisher PD

    Placental transporter localization and expression in the Human : the importance of species, sex, and gestational age differences

    Get PDF
    Grant Support: This work was supported by the Medical Research Council, UK (MR/L010011/1 to PAF, PJOS) and a Glasgow Children's Hospital Charity Research Fund and University of Aberdeen, UK, Elphinstone Scholarship to NW.Peer reviewedPublisher PD

    A method for the three-dimensional reconstruction of Neurobiotin(TM)-filled neurons and the location of their synaptic inputs

    Get PDF
    Here, we describe a robust method for mapping the number and type of neuro-chemically distinct synaptic inputs that a single reconstructed neuron receives. We have used individual hypoglossal motor neurons filled with Neurobiotin by semi-loose seal electroporation in thick brainstem slices. These filled motor neurons were then processed for excitatory and inhibitory synaptic inputs, using immunohistochemical-labeling procedures. For excitatory synapses, we used anti-VGLUT2 to locate glutamatergic pre-synaptic terminals and anti-PSD-95 to locate post-synaptic specializations on and within the surface of these filled motor neurons. For inhibitory synapses, we used anti-VGAT to locate GABAergic pre-synaptic terminals and anti-GABA-A receptor subunit a1 to locate the post-synaptic domain. The Neurobiotin-filled and immuno-labeled motor neuron was then processed for optical sectioning using confocal microscopy. The morphology of the motor neuron including its dendritic tree and the distribution of excitatory and inhibitory synapses were then determined by three-dimensional reconstruction using IMARIS software (Bitplane). Using surface rendering, fluorescence thresholding, and masking of unwanted immuno-labeling, tools found in IMARIS, we were able to obtain an accurate 3D structure of an individual neuron including the number and location of its glutamatergic and GABAergic synaptic inputs. The power of this method allows for a rapid morphological confirmation of the post-synaptic responses recorded by patch-clamp prior to Neurobiotin filling. Finally, we show that this method can be adapted to super-resolution microscopy techniques, which will enhance its applicability to the study of neural circuits at the level of synapses

    Non-Native Plants Disrupt Dual Promotion of Native Alpha and Beta Diversity

    Get PDF
    Abstract Non-native species can alter patterns of species diversity at multiple spatial scales, but the processes that underlie multi-scale effects remain unclear. Here we show that non-native species reduce native diversity at multiple scales through simultaneous disruption of two processes of native community assembly: species immigration, which enhances alpha diversity, and community divergence, which enhances beta diversity. Community divergence refers to the process in which local communities diverge over time in species composition because the history of species immigration and, consequently, the way species affect one another within communities are variable among communities. Continuous experimental removal of species over four years of floodplain succession revealed that, when non-native species were excluded, stochastic variation in the timing of a dominant native species' arrival allowed local communities to diverge, thereby enhancing beta diversity, without compromising promotion of alpha diversity by species immigration. In contrast, when non-native species were allowed to enter experimental plots, they not only reduced native alpha diversity by limiting immigration, but also diminished the dominant native species' role in enhancing native beta diversity. Our results highlight the importance of community assembly and succession for understanding multi-scale effects of non-native species

    Stimulating the release of exosomes increases the intercellular transfer of prions

    Get PDF
    Exosomes are small extracellular vesicles releasedby cells and play important roles in intercellular communication and pathogen transfer. Exosomes have been implicated in several neurodegenerative diseases, including prion disease and Alzheimer disease. Prion disease arises upon misfolding of the normal cellular prion protein, PrPC, into the disease-associated isoform, PrPSc. The disease has a unique transmissible etiology, and exosomes represent a novel and efficient method for prion transmission. The precise mechanism by which prions are transmitted from cell to cell remains to be fully elucidated, although three hypotheses have been proposed: direct cell-cell contact, tunneling nanotubes, and exosomes. Given the reported presence of exosomes inbiological fluids and in the lipid and nucleic acid contents of exosomes, these vesicles represent an ideal mechanism for encapsulating prions and potential cofactors to facilitate prion transmission. This study investigates the relationship between exosome release and intercellular prion dissemination. Stimulation of exosome release through treatment with an ionophore, monensin, revealed a corresponding increasein in tercellular transferofprion infectivity. Conversely, inhibition of exosome release using GW4869 to target the neutral sphingomyelinase pathway induced a decrease in intercellular prion transmission. Further examination of the effect of monensin on PrP conversion revealed that monensin also alters the conformational stability of PrPC, leading to increased generation of proteinase K-resistant prion protein. The findings presented here provide support for a positive relationship between exosome release and intercellular transfer of prion infectivity, highlighting an integral role for exosomes in facilitating the unique transmissible nature of prions

    Exposure to a Complex Cocktail of Environmental Endocrine-Disrupting Compounds Disturbs the Kisspeptin/GPR54 System in Ovine Hypothalamus and Pituitary Gland

    Get PDF
    BACKGROUND: Ubiquitous environmental chemicals, including endocrine-disrupting chemicals (EDCs), are associated with declining human reproductive health, as well as an increasing incidence of cancers of the reproductive system. Verifying such links requires animal models exposed to "real-life," environmentally relevant concentrations/mixtures of EDC, particularly in utero, when sensitivity to EDC exposure is maximal. OBJECTIVES: We evaluated the effects of maternal exposure to a pollutant cocktail (sewage sludge) on the ovine fetal reproductive neuroendocrine axes, particularly the kisspeptin (KiSS-1)/GPR54 (G-protein-coupled receptor 54) system. METHODS: KiSS-1, GPR54, and ERalpha (estrogen receptor alpha) mRNA expression was quantified in control (C) and treated (T) maternal and fetal (110-day) hypothalami and pituitary glands using semiquantitative reverse transcription polymerase chain reaction, and colocalization of kisspeptin with LHbeta (luteinizing hormone beta) and ERalpha in C and T fetal pituitary glands quantified using dual-labeling immunohistochemistry. RESULTS: Fetuses exposed in utero to the EDC mixture showed reduced KiSS-1 mRNA expression across three hypothalamic regions examined (rostral, mid, and caudal) and had fewer kisspetin immunopositive cells colocalized with both LHbeta and ERalpha in the pituitary gland. In contrast, treatment had no effect on parameters measured in the adult ewe hypothalamus or pituitary. CONCLUSIONS: This study demonstrates that the developing fetus is sensitive to real-world mixtures of environmental chemicals, which cause significant neuroendocrine alterations. The important role of kisspeptin/GPR54 in regulating puberty and adult reproduction means that in utero disruption of this system is likely to have long-term consequences in adulthood and represents a novel, additional pathway through which environmental chemicals perturb human reproduction
    corecore