23 research outputs found

    Stimulating the release of exosomes increases the intercellular transfer of prions

    Get PDF
    Exosomes are small extracellular vesicles releasedby cells and play important roles in intercellular communication and pathogen transfer. Exosomes have been implicated in several neurodegenerative diseases, including prion disease and Alzheimer disease. Prion disease arises upon misfolding of the normal cellular prion protein, PrPC, into the disease-associated isoform, PrPSc. The disease has a unique transmissible etiology, and exosomes represent a novel and efficient method for prion transmission. The precise mechanism by which prions are transmitted from cell to cell remains to be fully elucidated, although three hypotheses have been proposed: direct cell-cell contact, tunneling nanotubes, and exosomes. Given the reported presence of exosomes inbiological fluids and in the lipid and nucleic acid contents of exosomes, these vesicles represent an ideal mechanism for encapsulating prions and potential cofactors to facilitate prion transmission. This study investigates the relationship between exosome release and intercellular prion dissemination. Stimulation of exosome release through treatment with an ionophore, monensin, revealed a corresponding increasein in tercellular transferofprion infectivity. Conversely, inhibition of exosome release using GW4869 to target the neutral sphingomyelinase pathway induced a decrease in intercellular prion transmission. Further examination of the effect of monensin on PrP conversion revealed that monensin also alters the conformational stability of PrPC, leading to increased generation of proteinase K-resistant prion protein. The findings presented here provide support for a positive relationship between exosome release and intercellular transfer of prion infectivity, highlighting an integral role for exosomes in facilitating the unique transmissible nature of prions

    Novel miR-29b target regulation patterns are revealed in two different cell lines

    Get PDF
    MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene or protein expression by targeting mRNAs and triggering either translational repression or mRNA degradation. Distinct expression levels of miRNAs, including miR-29b, have been detected in various biological fluids and tissues from a large variety of disease models. However, how miRNAs “react” and function in different cellular environments is still largely unknown. In this study, the regulation patterns of miR-29b between human and mouse cell lines were compared for the first time. CRISPR/Cas9 gene editing was used to stably knockdown miR-29b in human cancer HeLa cells and mouse fibroblast NIH/3T3 cells with minimum off-targets. Genome editing revealed mir-29b-1, other than mir-29b-2, to be the main source of generating mature miR-29b. The editing of miR-29b decreased expression levels of its family members miR-29a/c via changing the tertiary structures of surrounding nucleotides. Comparing transcriptome profiles of human and mouse cell lines, miR-29b displayed common regulation pathways involving distinct downstream targets in macromolecular complex assembly, cell cycle regulation, and Wnt and PI3K-Akt signalling pathways; miR-29b also demonstrated specific functions reflecting cell characteristics, including fibrosis and neuronal regulations in NIH/3T3 cells and tumorigenesis and cellular senescence in HeLa cells

    Regulation of prion gene expression by transcription factors SP1 and metal transcription factor-1

    Get PDF
    Prion diseases are associated with the conformational conversion of the host-encoded cellular prion protein into an abnormal pathogenic isoform. Reduction in prion protein levels has potential as a therapeutic approach in treating these diseases. Key targets for this goal are factors that affect the regulation of the prion protein gene. Recent in vivo and in vitro studies have suggested a role for prion protein in copper homeostasis. Copper can also induce prion gene expression in rat neurons. However, the mechanism involved in this regulation remains to be determined. We hypothesized that transcription factors SP1 and metal transcription factor-1 (MTF-1) may be involved in copper-mediated regulation of human prion gene. To test the hypothesis, we utilized human fibroblasts that are deleted or overexpressing the Menkes protein (MNK), a major mammalian copper efflux protein. Menkes deletion fibroblasts have high intracellular copper, whereas Menkes overexpressed fibroblasts have severely depleted intracellular copper. We have utilized this system previously to demonstrate copper-dependent regulation of the Alzheimer amyloid precursor protein. Here we demonstrate that copper depletion in MNK overexpressed fibro-blasts decreases cellular prion protein and PRNP gene levels. Conversely, expression of transcription factors SP1 and/or MTF-1 significantly increases prion protein levels and up-regulates prion gene expression in copper-replete MNK deletion cells. Furthermore, siRNA "knockdown" of SP1 or MTF-1 in MNK deletion cells decreases prion protein levels and down-regulates prion gene expression. These data support a novel mechanism whereby SP1 and MTF-1 act as copper-sensing transcriptional activators to regulate human prion gene expression and further support a role for the prion protein to function in copper homeostasis. Expression of the prion protein is a vital component for the propagation ofprion diseases; thus SP1 and MTF-1 represent new targets in the devel-opment of key therapeutics toward modulating the expression of the cellular prion protein and ultimately the prevention of prion disease

    iSRAP - A one-touch research tool for rapid profiling of small RNA-seq data

    Get PDF
    Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of noncoding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes

    Distribution of microRNA profiles in pre-clinical and clinical forms of murine and human prion disease

    Get PDF
    Prion diseases are distinguished by long pre-clinical incubation periods during which prions actively propagate in the brain and cause neurodegeneration. In the pre-clinical stage, we hypothesize that upon prion infection, transcriptional changes occur that can lead to early neurodegeneration. A longitudinal analysis of miRNAs in pre-clinical and clinical forms of murine prion disease demonstrated dynamic expression changes during disease progression in the affected thalamus region and serum. Serum samples at each timepoint were collected whereby extracellular vesicles (EVs) were isolated and used to identify blood-based biomarkers reflective of pathology in the brain. Differentially expressed EV miRNAs were validated in human clinical samples from patients with human sporadic Creutzfeldt-Jakob disease (sCJD), with the molecular subtype at codon 129 either methionine-methionine (MM, n = 14) or valine-valine (VV, n = 12) compared to controls (n = 20). EV miRNA biomarkers associated with prion infection predicted sCJD with an AUC of 0.800 (85% sensitivity and 66.7% specificity) in a second independent validation cohort (n = 26) of sCJD and control patients with MM or VV subtype. This study discovered clinically relevant miRNAs that benefit diagnostic development to detect prion-related diseases and therapeutic development to inhibit prion infectivity

    The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes

    Get PDF
    Background: Exosomes are a novel mechanism of intercellular transmission of infectious prions. Results: Chemical and RNAi inhibition of the neutral sphingomyelinase (nSMase) pathway impairs exosome formation and prion packaging. Conclusion: The nSMase pathway regulates exosome formation and packaging of infectious prions. Significance: This reveals a novel role for the nSMase pathway in exosomal prion packaging and identifies a direct pathway, which mediates prion transmission
    corecore