11 research outputs found

    Transcriptome analysis of the adult human Klinefelter testis and cellularity-matched controls reveals disturbed differentiation of Sertoli- and Leydig cells article

    Get PDF
    AbstractThe most common human sex chromosomal disorder is Klinefelter syndrome (KS; 47,XXY). Adult patients with KS display a diverse phenotype but are nearly always infertile, due to testicular degeneration at puberty. To identify mechanisms causing the selective destruction of the seminiferous epithelium, we performed RNA-sequencing of 24 fixed paraffin-embedded testicular tissue samples. Analysis of informative transcriptomes revealed 235 differentially expressed transcripts (DETs) in the adult KS testis showing enrichment of long non-coding RNAs, but surprisingly not of X-chromosomal transcripts. Comparison to 46,XY samples with complete spermatogenesis and Sertoli cell-only-syndrome allowed prediction of the cellular origin of 71 of the DETs. DACH2 and FAM9A were validated by immunohistochemistry and found to mark apparently undifferentiated somatic cell populations in the KS testes. Moreover, transcriptomes from fetal, pre-pubertal, and adult KS testes showed a limited overlap, indicating that different mechanisms are likely to operate at each developmental stage. Based on our data, we propose that testicular degeneration in men with KS is a consequence of germ cells loss initiated during early development in combination with disturbed maturation of Sertoli- and Leydig cells.</jats:p

    Sequencing and de novo assembly of 150 genomes from Denmark as a population reference

    Get PDF
    Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set of structural variants including many novel insertions and demonstrate how this variant catalogue enables further deciphering of known association mapping signals. We leverage the assemblies to provide 100 completely resolved major histocompatibility complex haplotypes and to resolve major parts of the Y chromosome. Our study provides a regional reference genome that we expect will improve the power of future association mapping studies and hence pave the way for precision medicine initiatives, which now are being launched in many countries including Denmark

    Effects of active farnesoid X receptor on GLUTag enteroendocrine L cells

    No full text
    Activated transcription factor (TF) farnesoid X receptor (FXR) represses glucagon-like peptide-1 (GLP-1) secretion in enteroendocrine L cells. This, in turn, reduces insulin secretion, which is triggered when β cells bind GLP-1. Preventing FXR activation could boost GLP-1 production and insulin secretion. Yet, FXR's broader role in L cell biology still lacks understanding. Here, we show that FXR is a multifaceted TF in L cells using proteomics and gene expression data generated on GLUTag L cells. Most striking, 252 proteins regulated upon glucose stimulation have their abundances neutralized upon FXR activation. Mitochondrial repression or glucose import block are likely mechanisms of this. Further, FXR physically targets bile acid metabolism proteins, growth factors and other TFs, regulates ChREBP, while extensive text-mining found 30 FXR-regulated proteins to be well-known in L cell biology. Taken together, this outlines FXR as a powerful TF, where GLP-1 secretion block is just one of many downstream effects

    Complete Topological Mapping of a Cellular Protein Interactome Reveals Bow-Tie Motifs as Ubiquitous Connectors of Protein Complexes

    Get PDF
    The network topology of a protein interactome is shaped by the function of each protein, making it a resource of functional knowledge in tissues and in single cells. Today, this resource is underused, as complete network topology characterization has proved difficult for large protein interactomes. We apply a matrix visualization and decoding approach to a physical protein interactome of a dendritic cell, thereby characterizing its topology with no prior assumptions of structure. We discover 294 proteins, each forming topological motifs called “bow-ties” that tie together the majority of observed protein complexes. The central proteins of these bow-ties have unique network properties, display multifunctional capabilities, are enriched for essential proteins, and are widely expressed in other cells and tissues. Collectively, the bow-tie motifs are a pervasive and previously unnoted topological trend in cellular interactomes. As such, these results provide fundamental knowledge on how intracellular protein connectivity is organized and operates. Niss et al. show that topological motifs called bow-ties create a scaffold within the cellular protein interactome that connects a majority of protein complexes. The central proteins of these motifs are found to be associated with multifunctionality and cellular essentiality, display unique network properties, and are expressed widely across cells and tissues

    Drug dosage modifications in 24 million in-patient prescriptions covering eight years: A Danish population-wide study of polypharmacy.

    No full text
    Polypharmacy has generally been assessed by raw counts of different drugs administered concomitantly to the same patients; not with respect to the likelihood of dosage-adjustments. To address this aspect of polypharmacy, the objective of the present study was to identify co-medications associated with more frequent dosage adjustments. The data foundation was electronic health records from 3.2 million inpatient admissions at Danish hospitals (2008-2016). The likelihood of dosage-adjustments when two drugs were administered concomitantly were computed using Bayesian logistic regressions. We identified 3,993 co-medication pairs that associate significantly with dosage changes when administered together. Of these pairs, 2,412 (60%) did associate with readmission, mortality or longer stays, while 308 (8%) associated with reduced kidney function. In comparison to co-medications pairs that were previously classified as drug-drug interactions, pairs not classified as drug-drug interactions had higher odds ratios of dosage modifications than drug pairs with an established interaction. Drug pairs not corresponding to known drug-drug interactions while still being associated significantly with dosage changes were prescribed to fewer patients and mentioned more rarely together in the literature. We hypothesize that some of these pairs could be associated with yet to be discovered interactions as they may be harder to identify in smaller-scale studies
    corecore