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motifs are found to be associated with

multifunctionality and cellular
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properties, and are expressed widely
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SUMMARY
The network topology of a protein interactome is shaped by the function of each protein, making it a resource
of functional knowledge in tissues and in single cells. Today, this resource is underused, as complete network
topology characterization has proved difficult for large protein interactomes. We apply a matrix visualization
and decoding approach to a physical protein interactome of a dendritic cell, thereby characterizing its topol-
ogy with no prior assumptions of structure. We discover 294 proteins, each forming topological motifs called
‘‘bow-ties’’ that tie together the majority of observed protein complexes. The central proteins of these bow-
ties have unique network properties, display multifunctional capabilities, are enriched for essential proteins,
and are widely expressed in other cells and tissues. Collectively, the bow-tie motifs are a pervasive and
previously unnoted topological trend in cellular interactomes. As such, these results provide fundamental
knowledge on how intracellular protein connectivity is organized and operates.
INTRODUCTION

Protein-protein interactomes are large assemblies of protein-

protein interactions (PPIs) (Licata et al., 2012; Chatr-Aryamontri

et al., 2017; Li et al., 2017) and can be pruned such that they

model the proteome of a specific tissue, cell type, or cellular

state (Magger et al., 2012; Pedersen et al., 2017; Yeger-Lotem

and Sharan, 2015). Becausemultiple algorithms can predict pro-

tein function on the basis of local network topology (Chua et al.,

2006; Hishigaki et al., 2001; Zhao et al., 2016), it follows that the

function of proteins must have shaped the network topology.

This statement is also true for the function of protein assemblies.

Protein assemblies form specific topological structures (motifs),

whose layout indicates their collective function: proteins ar-

ranged in pathways often transduce signals, proteins with

many PPIs frequently regulate their neighboring proteins (Lefeb-

vre et al., 2010), and proteins in highly interconnected complexes

often work in sync on the same biological process (Hu et al.,

2016). Hence, network topology should be considered a

resource of functional information. By applying network topology

analysis, this resource can be mined.

However, complete characterization of the network topology of

large protein interactomes is difficult. When interactomes exceed

a couple of hundred proteins, graph visualization using edges and

nodes becomes uninformative. This issue is known as the hairball
This is an open access article und
problem. Previous studies have avoided the problem by using

network science metrics to show hierarchy structure and modu-

larity in protein interactomes (Ravasz et al., 2002; Barabási and

Oltvai, 2004). Partitioning the interactome into workable subnet-

works is an alternative strategy that has demonstrated the pres-

ence of other topological motifs, such as protein complexes

and hubs. Still, network science metrics provide only a high-level

topological understanding, while partitioning the interactome into

subnetworks will never provide a complete overview in detail.

In this study, we characterized the topology of a physical PPI

interactome from a conventional dendritic cell lineage 1 (cDC1),

consisting of 8,569 proteins and 278,365 PPIs. Specifically, we

visualized the interactome’s complete topology in a weighted to-

pological overlap (wTO) affinity matrix and decoded the sub-

structures observed in this matrix into topological network mo-

tifs. In the cDC1 PPI interactome, we found rare topological

motifs such as the bow-tie motif, which connected protein com-

plexes, and a type of ‘‘multi-protein hub’’ motif centered around

Rho-family GTPases, while we also observed well-known motifs

such as protein complexes and hub proteins. Extensive network

and functional analysis of the cDC1 bow-tie motifs’ key proteins,

called ‘‘knot’’ proteins (n = 294), revealed that they were a perva-

sive topological trend, having multifunctional capabilities, spe-

cific network properties, and widespread expression in cells

and tissue, and were important for cell survival.
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RESULTS

Construction and Visualization of the cDC1 Interactome
We sorted XCR1+MHCIIhi cDC1 cells using fluorescence-acti-

vated cell sorting (FACS) extracted from murine mesenteric

lymph nodes (Figure S1). Then we generated gene expression

RNA sequencing (RNA-seq) data and determined which genes

were actively expressed in cDC1 cells (see STAR Methods for

details). For the creation of the cDC1 PPI interactome, we ob-

tained PPIs from the meta-database InWeb_IM, which contains

experimentally generated, scored, and benchmarked PPIs from

human, mice, and other eukaryotes (Li et al., 2017). The cDC1-

specific interactome were constructed using the node-removal

approach applied to InWeb_IM, including the protein products

of expressed genes in cDC1 cells and their associated PPIs

(Magger et al., 2012). This resulted in an interactome consisting

of 8,569 proteins and 278,365 PPIs with a mean shortest path of

2.68 interactions.

To decode the topology of the cDC1-specific interactome, we

calculated the pairwise topological relationship between all

8,569 proteins (~36.7 million pairs) using the wTO measure.

The wTO is the relative number of shared first-order neighbors

between two proteins and is a good measure of ‘‘interconnec-

tedness’’ (Ravasz et al., 2002; Zhang and Horvath, 2005) (Fig-

ure 1B). Hence, the wTO measure between two proteins cap-

tures more network topology information than the confidence

score of their PPI interaction. When calculating the wTO mea-

sure, we weighed each PPI according to its confidence score

(0.0–1.0), which is a score assigned by the InWeb_IM database

(see STAR Methods). We visualized the wTO pairs in a hierar-

chically clustered wTO affinity matrix, which we combined with

a half black-and-white matrix of direct PPIs (Figure 1A).

An Approach to Decode Network Topology
The cDC1-specific wTO affinity matrix contains substructures in

the form of dark lines, squares, dots, and more (Figure 1A). This

substructure encodes the network topology; hence, the topology

can be decoded directly from the matrix. To demonstrate, we

generated a mock network and its corresponding direct PPI/

wTO matrix (Figures 1C and 1D). The mock network illustrates

how two types of topological motifs (i.e., hubs and complexes)

create two distinct types of substructures in the wTOmatrix (lines

and squares). Thus, we can determine that the mock network

contains five complexes, all connected by a hub, solely by reading

the matrix. For very large networks, this decoding approach is

especially useful, as such networks cannot be visualized in a

comprehensible manner using nodes and edges (i.e., graph visu-

alization). We provide an R package for the construction of wTO

matrices directly from igraph objects, applicable to any weighted

or unweighted network (https://github.com/k-niss/bowtie).

Topological Characterization of the cDC1 Interactome
Manual inspection of the cDC1 interactome’s direct PPI/wTO

matrix (Figure 1A) revealed four types of substructures (exam-

ples in Figures 2B–2I). Similar to the mock network, we found

square substructures that encoded almost or fully connected

protein complexes (Figures 2B and 2C), while line substructures

encoded hub proteins, here exemplified by SUMO3 (Figures 2D
2 Cell Reports 31, 107763, June 16, 2020
and 2E). We further noticed that there were line substructures

between the squares in multiple cases (Figure 2F). When such

areas of the matrix were graph-visualized (Figure 2G), the sub-

structures turned out to be a topological motif called a bow-tie,

which connected the protein complexes (Broder et al., 2000;

Csete and Doyle, 2004; Kitano, 2004, 2007; Tieri et al., 2010).

In its simplest form, a bow-tie motif consists of a ‘‘knot’’ in the

center, connected to two separate entities. In our case, the

‘‘knot’’ is a protein connected to two protein complexes via inter-

action fans (Figure 2G, schematic). Finally, we observed a block

substructure (Figure 2H), which encoded a ‘‘multi-protein hub’’

motif (Figure 2I). In this motif, a core set of 14 Rho-family

GTPases (Figure 2I, blue nodes) all acted as hub proteins for

the same set of 70 proteins (Figure 2I, gray nodes). The set of

70 proteins were only sparsely interconnected themselves (see

detailed graph visualization in Figure S1). It was clear that the

square substructures (complexes), line substructures (hubs),

and lines between square substructures (bow-ties) were reoc-

curring throughout the cDC1 matrix (Figure 1A). However, the

‘‘multi-hub protein’’ motif was observed only once.

Protein complexes and hub proteins have been extensively

studied at an interactome-wide level, using community detection

algorithms to find protein complexes and using the high degree

as a selection criterion to find hub proteins. In contrast, bow-tie

motifs have been detected only a few times in PPI networks (Oda

and Kitano, 2006; Polouliakh et al., 2009; Abd-Rabbo and Mich-

nick, 2017), and their potential role as recurring connectors of

protein complexes has not been investigated. Therefore, to

obtain an overview of the bow-tie motifs in the cDC1 interac-

tome, we cataloged the ‘‘knot’’ proteins and their interaction

fans using a two-step process. First, we computationally tra-

versed the cDC1 interactome’s direct PPI matrix along the diag-

onal for square substructures and identified 64 protein com-

plexes ranging from 9 to 132 proteins in size (Figure S2; STAR

Methods). All protein complexes were densely interconnected

(mean clustering coefficient 0.9549 ± 0.06). We annotated

each protein complex with its most significant term from either

the Gene Ontology (GO) Biological Process Database or the Re-

actome Database (Table S1A). Second, we computationally

searched the cDC1 interactome’s direct PPI matrix for line sub-

structures between the identified protein complexes (Figure S2;

STAR Methods). The ‘‘lines’’ represent interactions between a

‘‘knot’’ protein and the members of a protein complex. Further-

more, to be classified as a ‘‘knot’’ protein, a protein had to be

connected to R2 protein complexes with at least 10 PPIs con-

necting it to each complex, where the average confidence

score of the PPIs had to be R0.9 (see STAR Methods). Here,

confidence score refers to the metric assigned to each PPI by

the InWeb_IM database. Thereby, we identified 294 ‘‘knot’’ pro-

teins (Table S1B).

Network Analysis of the Bow-Tie Motifs
Weperformed a network analysis of the bow-tiemotifs. One third

of the ‘‘knot’’ proteins had more than two interaction fans (Fig-

ure 3A). ‘‘Knot’’ proteins also hadmore PPIs than the typical pro-

tein in the cDC1-specific interactome (Figure 3B). By deter-

mining network metrics that describe how important a protein

is for the global information flow of the interactome, we found

https://github.com/k-niss/bowtie
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Figure 1. Network Topology of the cDC1-Specific Interactome

(A) In the upper/left matrix, direct protein-protein interactions from InWeb_IM are displayed in black. In the lower/right matrix, the weighted topological overlap

(wTO) measure between protein pairs is displayed. Larger protein complexes (n R 15) are annotated to the right using the Gene Ontology Biological Process

database or Reactome. The numbers in parentheses are the proteins significant for the annotation term relative to the complex size. The matrix is hierarchically

clustered on the basis of the wTO measure.

(B) Graphical representation of the wTO measure. The wTO measure increases as proteins become more interconnected, here exemplified by protein L and O:

wTOL,O increases to 0.75 when L-M connects and further increases to 1.0 when also N-O connects. Yet wTOL,O does not increase further by adding the N-M

connection, because this connection does not increase the inter-connection between L and O.

(C) A mock network consisting of two types of topological motifs: a hub (orange node) and five complexes (gray/black nodes).

(D) The direct PPI matrix combined with the wTO matrix of the mock network. The orange hub motif is observable as long horizontal and vertical lines in the wTO

matrix, while the complexes appear as dark blue squares. The network topology can be read directly from the matrix by linking specific matrix substructures to

known topological motifs.

See also Figure S1 and Table S1A.

Article
ll

OPEN ACCESS
that ‘‘knot’’ proteins were less important than other proteins with

a similarly large number of PPIs (i.e., degree distribution) (see

STAR Methods), as their metrics were significantly lower on
average: betweenness centrality p = 0.0161, closeness centrality

p = 0.0001, and nodal efficiency p = 0.0e�4 (Figure 3C). In

contrast, we found ‘‘knot’’ proteins significantly more tightly
Cell Reports 31, 107763, June 16, 2020 3
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Figure 2. Overview of Different Matrix Substructures and Corresponding Topology Motifs Found in the cDC1 Interactome PPI/wTO Matrix

(A) The location of the discovered substructure examples in the complete cDC1 PPI/wTO matrix.

(B, D, F, and H) The substructures were (B) squares, (D) horizontal and vertical lines, (F) lines between squares, and (H) lines alongside each other forming a block.

(C, E, G, and I) By extracting the proteins from the respective matrices in (B), (D), (F), and (H), as indicated by the red arrows, and plotting their interactions, (C) the

squares were found to encode protein complexes, (E) the lines encoded hub proteins, (G) the lines between squares encoded bow-tie motifs connecting protein

complexes, and (I) the blocks encoded a type of ‘‘multi-protein hub’’ motif.

See also Figure S1.
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clustered in their local network neighborhood compared with

other proteins with a similar degree distribution, as described

by the high clustering coefficient (p = 0.0e�4) (Figure 3C).

We constructed a connection grid to illustrate how the ‘‘knot’’

proteins connected the 64 protein complexes (Figure 3D). The

grid showed that bow-tie motifs collectively create a scaffold

that connects most of the protein complexes in the cDC1 inter-

actome (51 of 64). We colored the protein complexes by their

subcellular compartment (Table S1C), which revealed that

complexes with related functions had more connections than
4 Cell Reports 31, 107763, June 16, 2020
the reverse. For an example, two protein complexes of the Golgi

apparatus had 50 bow-tie motifs connecting them (Figure 3D,

boxed). Interestingly, we further observed examples of bow-tie

motifs that cross subcellular compartments, such as the motifs

created by ‘‘knot’’ protein HSPA8 or ATP6AP1 (Figure 3D,

asterisks).

Functional Analysis of the Bow-Tie Motif
We became interested in the functional rationale behind con-

necting a majority of protein complexes using bow-tie motifs.
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Figure 3. The ‘‘Knot’’ Proteins of Bow-Tie Motifs

(A) The number of interactions fans per ‘‘knot’’ protein.

(B) Degree distribution for ‘‘knot’’ proteins (red) and non-knot proteins (gray).

(C) Mean networkmeasures for the ‘‘knot’’ proteins (red) against a background of proteins sampled at random (dark gray) and sampled at randomwhile keeping a

similar degree distribution (light gray).

(D) A grid of protein complexes connected by bow-tie motifs. The 294 identified ‘‘knot’’ proteins are hierarchically ordered along the x axis, and annotated protein

complexes are similarly ordered along the y axis. Vertical lines with dots show which protein complexes are connected by ‘‘knot’’ proteins. Horizontal lines help

the eye in tracing the protein complexes across the plot. The lengths of lines have no meaning. A ‘‘knot’’ protein can connect more than two protein complexes;

hence more than two dots can occur on a vertical line. Indented protein complexes (n = 13) on the y axis (bottom part) are not connected by bow-ties.

See also Figure S2 and Tables S1A–S1C.
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We investigated the biological functions of the 294 ‘‘knot’’ pro-

teins and discovered that they were associated with a signifi-

cantly large number of GO biological processes relative to other

proteins with a similar degree distribution (permutation test,

10,000 degree-adjusted sampling) (Figure 4A). This result sug-
gests that the ‘‘knot’’ proteins are multifunctional, which is

perhaps enabled by their bow-tie topology.

Investigating the bow-tie motifs in detail, we foundmultiple ex-

amples of multifunctional ‘‘knot’’ proteins, whose biological

function appears to change according to which protein complex
Cell Reports 31, 107763, June 16, 2020 5



A B

C D E F

G I K

H J

Figure 4. Functional Characterization of Bow-Ties and ‘‘Knot’’ Proteins

(A) The geometric mean of the number of associated biological process Gene Ontology (GO) terms for each ‘‘knot’’ protein (red line) relative to a distribution of

10,000 random protein sets with a degree distribution similar to the ‘‘knot’’ proteins (gray density).

(B) A network visualization of the protein complexes ‘‘ribonucleoprotein complex export from nucleus’’ and ‘‘resolution of sister chromatid cohesion’’ with 11

‘‘knot’’ proteins connecting them via bow-tie motifs.

(C and D) The number of ‘‘knot’’ proteins in different subcellular compartments (C) and in membraneless organelles (D) relative to a distribution of 10,000 random,

degree-adjusted protein sets.

(E) The geometric mean of the protein mass, domain count and isoform count for each ‘‘knot’’ protein relative to 10,000 random, degree-adjusted protein sets.

(F) The percentage of the ‘‘knot’’ proteins found to be expressed in six different immune cells.

(G) The number of ‘‘knot’’ proteins found in a set of housekeeping genes, relative to a distribution of 10,000 randomly sampled protein sets (dark gray) or sampled

using a degree-adjusted approach (light gray).

(H) The number of ‘‘knot’’ protein in disease protein sets related to Cockayne syndrome, Diamond-Blackfan anemia, Cornelia de Lange syndrome, and xeroderma

pigmentosum relative to a distribution of 10,000 randomly sampled protein sets.

(legend continued on next page)

6 Cell Reports 31, 107763, June 16, 2020
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they interact with. One such example was the 11 ‘‘knot’’ proteins

connecting the protein complexes ‘‘ribonucleoprotein complex

export from nucleus’’ and ‘‘resolution of sister chromatid cohe-

sion’’ (Figure 4B). Four of the ‘‘knot’’ proteins are members of

the nuclear pore complex (NPC), 5 of them members of the

sub-nucleoporin complex Nup107–160 (Harel et al., 2003), and

2 of them are cyclins. During cellular interphase, the NPC and

Nup107–160 complexes form pores in the nuclear membrane

through which RNA and proteins are transported (Griffis et al.,

2002), and they are therefore part of the ‘‘ribonucleoprotein com-

plex export from nucleus’’ complex. In contrast, during cellular

prometaphase, the NPC and Nup107–160 complexes partici-

pate in bipolar spindle assembly (Orjalo et al., 2006), which is a

process associated with the ‘‘resolution of sister chromatid

cohesion’’ complex. Importantly, the biological processes of

‘‘ribonucleoprotein complex export from nucleus’’ and ‘‘resolu-

tion of sister chromatid cohesion’’ are temporally non-overlap-

ping, because the nuclear membrane is intact in interphase,

while it is dissolved during prometaphase. The example illus-

trates how the ‘‘knot’’ proteins are potentially multifunctional,

carrying out different functions in collaboration with different pro-

tein complexes dependent on the cellular context. We present

two additional example of multifunctional ‘‘knot’’ proteins in Fig-

ure S3 related to the proteasome, the INO80 helicase complex

and two types of DNA repair (Gillet and Schärer, 2006; Salas

et al., 2009; Svendsen et al., 2009; Yao et al., 2008; Zediak

and Berger, 2008).

Function, Expression, and Clinical Significance of
‘‘Knot’’ Proteins
We continued by performing a broader functional characteriza-

tion of the 294 ‘‘knot’’ proteins. When assigning corresponding

subcellular compartments to each ‘‘knot’’ protein using the

COMPARTMENTS database (Binder et al., 2014), we found

that ‘‘knot’’ proteins were significantly enriched in the cytoskel-

eton (p = 0.012), the Golgi apparatus (p = 0.0e�4), and the nu-

cleus (p = 1.0e�4), while being underrepresented in the mito-

chondria (p = 0.0e�4) (permutation test, 10,000 degree-

adjusted sampling) (Figure 4C). Membraneless organelles have

recently gained interest as another strategy for intracellular

compartmentalization complementing membrane-enclosed or-

ganelles (Nott et al., 2016). To investigate the importance of

bow-tie topology in these, we calculated the enrichment of

‘‘knot’’ proteins in ten membraneless organelles (Gomes and

Shorter, 2019). ‘‘Knot’’ proteins were found to be significantly

enriched in two membraneless organelles: nuclear specks

(p = 4e�04) and in histone locus bodies (p = 0.0406) (permutation

test, 10,000 degree-adjusted sampling) (Figure 4D). We further

checked for enrichment of membraneless organelle proteins in

our 64 protein complexes, as the complexes resemble mem-

braneless organelles on a number of parameters (Gomes and

Shorter, 2019). Protein sets from five of ten membraneless or-
(I and J) The number of ‘‘knot’’ proteins found in a set of essential genes from S.

relative to a distribution of 10,000 randomly sampled protein sets (dark gray) or

(K) The ‘‘knot’’ protein count in each of the four therapeutic target development

sets. Proteins found in Tdark, which are the least studied, have been highlighted

See also Figures S3 and S4 and Tables S1D–S1G.
ganelles were found to be enriched in a protein complex,

whereof three of the organelles were enriched in more than

two protein complexes (Figure S3).

Investigating the physical properties of ‘‘knot’’ proteins, we

found that they had a significantly lower protein mass (p =

1.0e�3), fewer domains (p = 6e�4), and fewer isoforms (p =

6.3e�3) compared with other high-degree proteins. However,

the sizes of the differences were small in all three cases

(Figure 4E).

Although we worked on an interactome specific to cDC1, our

analyses indicated that the ‘‘knot’’ proteins themselves were not

cDC1 specific.We thus investigated the expression of the ‘‘knot’’

proteins in six types of human immune cells using a separate

dataset (Linsley et al., 2014) and found that the majority

(81%–95.2%) of the ‘‘knot’’ proteins were expressed (Figure 4F).

We furthermore created a B cell interactome (n = 9,919 proteins)

and a natural killer (NK) cell interactome (n = 10,048 proteins) on

the basis of the mentioned dataset (Linsley et al., 2014) and un-

dertook a complete topological analysis on both of them iden-

tical to the one applied to the cDC1 interactome (Figure S4). In

the B cell, we found 73 protein complexes and 392 ‘‘knot’’ pro-

teins, while in the NK cell, we found 68 protein complexes and

361 ‘‘knot’’ proteins (Tables S1D–S1G). When comparing the

cells, 223 ‘‘knot’’ proteins were shared among B, NK, and

cDC1 cells, suggesting that many ‘‘knot’’ proteins are not cell

type specific. Moreover, using the tissue database GTEx (Battle

et al., 2017), we found 70% of the cDC1 ‘‘knot’’ proteins ex-

pressed at five transcripts per million in all GTEx tissues (Fig-

ure S3). Collectively, these results indicate that a major part of

the cDC1 ‘‘knot’’ proteins are common proteins, being ex-

pressed in many different cell types and tissues. Testing for

the ‘‘knot’’ proteins’ enrichment in a set of housekeeping genes

(Eisenberg and Levanon, 2013) (Figure 4G), the ‘‘knot’’ proteins

were found to be enriched relative to a random sampling of pro-

teins (p = 0.0e�04), but when compared with other high-degree

proteins, the number was expected.

With the unique network features of ‘‘knot’’ proteins and their

expression across cell types and tissues, we investigated their

clinical significance. Using the DISEASE database (Pletscher-

Frankild et al., 2015), we found ‘‘knot’’ proteins significantly en-

riched (permutation test, 10,000 sampling) in four severe disor-

ders (Figure 4H). These were related to mutations in either

DNA damage repair genes (Cockayne syndrome, Cornelia de

Lange syndrome, xeroderma pigmentosum) or ribosomal genes

(Diamond-Blackfan anemia). We found it striking that no cancer

types were found, as cancer often increases themutation rate by

mutating DNA repair genes. A potential reason for the lack of

cancer enrichment could be that many ‘‘knot’’ proteins are

fundamental for cell survival (i.e., essential). We tested this by

asking if the ‘‘knot’’ proteins were enriched (permutation test,

10,000 sampling) in a set of S. cerevisiae essential genes (Liu

et al., 2015) (Figure 4I) and in a set of common essential genes
cerevisiae (I) and in a set of common essential genes from Project Achilles (J),

sampled using a degree-adjusted approach (light gray).

levels (see text for details) relative to 10,000 degree-adjusted sampled protein

in a box.
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from the Achilles project (Figure 4J), which is a screen of 18,333

knocked-out genes across 625 human cell lines. The ‘‘knot’’ pro-

teins were found to be enriched in both the S. cerevisiae set

(randombackground, p = 0.0e�4; degree-adjusted background,

p = 0.0e�4) and in the Achilles project set (random background,

p = 0.0e�4; degree-adjusted background, p = 0.0e�4).

Finally, we looked up the therapeutic target development level

(TDL) of each ‘‘knot’’ protein (Oprea et al., 2018) (Figure 4K). This

is a knowledge metric that assess how well studied a protein is.

The TDL levels are ranked from least to most studied: Tdark, Tbio,

Tchem, and Tclin (See Oprea et al., 2018, for the exact definition of

each T level). The ‘‘knot’’ proteins were enriched in Tbio (p =

0.0015) and underrepresented in Tchem (p = 0.0125). Although

the ‘‘knot’’ protein were not enriched in Tdark, we would still like

to highlight the 16 ‘‘knot’’ proteins found in this category, as

they represent a particularly interesting group for further studies.

DISCUSSION

Through a complete visual overview of a cDC1-specific PPI inter-

actome’s network topology, we discovered that bow-tie motifs

connect protein complexes in cellular interactomes. A set of

294 bow-tiemotifs connected 51 densely interconnected protein

complexes in the cDC1 interactome, while similar trends were

shown within a B cell and an NK cell interactome. The bow-tie

motif is known for being the design of the World Wide Web

(Broder et al., 2000) and is used in systems engineering (Tieri

et al., 2010). In cell biology, bow-tie motifs have been shown to

exist in the Toll-like receptor pathway, G protein-coupled recep-

tor pathway, and kinase/phosphatase signaling pathways (Abd-

Rabbo and Michnick, 2017; Oda and Kitano, 2006; Polouliakh

et al., 2009). With this work, we demonstrate that bow-tie motifs

are present in diverse functional areas of the cellular interac-

tome, not just in signaling pathways, and we also show that

the bow-tie motif is far more numerous than previously thought.

Clearly, the bow-tie motif is a deviation of the more general

hub protein motif, as it is centered around a protein with many

PPIs. As such, the bow-tie motif could be considered a subtype

of the hub protein, as it has many PPIs, but it also has a strict

motif definition: it must have a large number of PPIs connecting

it to at least two protein complexes. The bow-tie motif further-

more grants its ‘‘knot’’ proteins statistical significantly different

network properties relative to other high-degree proteins (i.e.,

hub proteins), being less important for global network informa-

tion flow (low betweenness centrality, low closeness centrality,

and low nodal efficiency) but highly clustered into its local inter-

actome neighborhood (high clustering coefficient). Within this

local interactome neighborhood, the ‘‘knot’’ protein is then,

conversely, very important for information flow. We find multiple

examples of bow-tie motifs with at least three interaction fans,

which has not been seen in a PPI interactome before. We also

find that some protein complex pairs are connected by up to

50 bow-tie motifs in a repeated fashion, which has not been

associated with bow-tie motifs before either.

We showedmultiple examples of bow-tie motifs whose ‘‘knot’’

proteins carried out certain biological processes when associ-

ated with one complex, while carrying out functionally distinct

biological processes when associated with another complex. A
8 Cell Reports 31, 107763, June 16, 2020
statistical analysis of all ‘‘knot’’ proteins further revealed that in

general they were associated with a significantly larger number

of biological processes than other high-degree proteins. In

sum, our results suggest that ‘‘knot’’ proteins tend to be multi-

functional. The network motif of the bow-tie possibly enables

the ‘‘knot’’ proteins to carry out multiple functions by allowing

them to switch between protein complexes. Thismultifunctional-

ity role has not been linked to bow-tie motifs before, as they have

previously been found only in signaling pathways, where they are

known to coordinate signal (Kitano, 2004). However, investiga-

tion into ‘‘knot’’ proteins that are not currently known to be multi-

functional is required before the ‘‘knot’’ protein designation can

be used as an indicator of multifunctionality.

We found that ‘‘knot’’ proteins were enriched in the nucleus,

Golgi apparatus, and cytoskeleton. In the nucleus, many distinct

biological processes apply the same mechanistic steps, such as

DNA helix unwinding, which is used to initiate DNA replication,

DNA repair, and transcription. We hypothesized that ‘‘knot’’ pro-

teins were situated in bow-tie motifs, such that their function

could be shared among distinct biological processes. It hereby

follows that ‘‘knot’’ proteins are overrepresented in the nucleus

because sharing of mechanistic steps and therefore enzymatic

proteins is common in the nucleus. Similarly, in the Golgi appa-

ratus, the vesicle transport and trafficking system consists of

multiple biological processes, including antero- and retrograde

transport between the endoplasmic reticulum (ER) and Golgi

and vesicle transport to endosomes, lysosomes, and extracel-

lular space. As in the nucleus, these processes share proteins

for common mechanistic steps, and enrichment of multifunc-

tional ‘‘knot’’ proteins is therefore not surprising. In contrast,

we showed underrepresentation of ‘‘knot’’ proteins in the mito-

chondrion. This may be explained by evolutionary theory,

wherein the mitochondrion is thought to be a descendent of an

endocytosed bacterium. The protein machinery of themitochon-

drion is therefore expected to be somewhat isolated from the re-

maining cell.

The ‘‘knot’’ proteins were found to be overrepresented in pro-

tein sets of four severe diseases that are caused by mutations in

DNA repair pathways. Given the severity of these diseases, we

investigated and found that ‘‘knot’’ proteins were enriched in

two sets of genes known to be essential. The multifunctional

feature of ‘‘knot’’ proteins may be the driving reason for their es-

sentiality, as multifunctionality is a core principle of cellular orga-

nization. This is demonstrated by the human genome’s surpris-

ingly small number of protein-coding genes. The number is in

fact still decreasing in reference genome revisions today, as

some predicted genes and intron-free open reading frames are

found to be non-coding (Ezkurdia et al., 2014).

We observed a ‘‘multi-hub protein’’ motif of 14 Rho-family

GTPases acting as hubs for the same set of 70 proteins. The

Rho family of GTPases regulates intracellular actin dynamics,

such as the formation of lamellipodium on cells (Hall, 2012).

Other studies have shown that RhoA, RhoB, RhoC, RhoD, and

Cdc42 of the Rho family have a hub-like motif (Paul et al.,

2017; Pertz et al., 2008). Our network expands on this, illustrating

that more Rho-family GTPases have hub-like motif topology in

the PPI interactome than previously thought and that they share

70 protein interactors in the case of the cDC1 interactome.
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We apply hierarchical clustering and the proven wTO mea-

sure of protein pairs to a new problem: the analysis of network

topology in large cellular interactomes. Our work further pre-

sents an approach to decode substructures of a wTO matrix

into topological motifs, thereby revealing fundamental topolog-

ical trends. A key strength of this methodology is that by visu-

alizing the cellular interactomes’ complete network topology

up front, we were able to start our topological characterization

with no prior assumptions regarding the network’s structure.

This feature sets our approach apart from other network anal-

ysis algorithms. Furthermore, we chose to study the cDC1, B

cell, and NK cell because of the availability of data, while a

study of the unspecific PPI interactome was not included, as

its biological relevance is limited.

Cell type-specific protein interactomes are incredibly

complex, often containing more than 10,000 proteins that

form dense interaction networks, typically with an average

shortest path of two or three steps. This complexity makes

the study of their topology difficult. Our approach to decode

their topology and uncover topological motifs and trends will

hopefully increase the use of interactomes and networks in

general. Furthermore, our discovery and characterization of

the bow-tie motif in the context of the cellular PPI interactome

provides fundamental knowledge on how the intracellular

system is organized and operates.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

BV510 anti-mouse CD45, clone 30-F11 BD Bioscience 563891; RRID: AB_2734134

AF700 anti-mouse CD3e, clone 17A2 BioLegend 100215; RRID: AB_493696

AF700 anti-mouse CD19, clone 6D5 BioLegend 115527; RRID: AB_493734

AF700 anti-mouse B220, clone RA3-6B2 BioLegend 103232; RRID: AB_493717

AF700 anti-mouse TER119, clone TER-119 BioLegend 116218; RRID: AB_528961

AF700 anti-mouse NK-1.1, clone PK136 BioLegend 108729; RRID: AB_2074426

BV711 anti-mouse IA/IE (MHC II), clone M5/114.15.2 BD Bioscience 107643; RRID: AB_2738191

BV605 anti-mouse CD11b, clone M1/70 BioLegend 101237; RRID: AB_11126744

PE-Cy7 anti-mouse CD11c, clone N418 eBioscience 25-0114-82; RRID: AB_469590

BV421 anti-mouse CD103, clone M290 BD Bioscience 562771; RRID: AB_2737783

AF647 anti-mouse CD64, clone X54-5/7.1 BD Bioscience 558539; RRID: AB_647120

Biotin anti-mouse CD3e, clone 17A2 BioLegend 100244; RRID: AB_2563947

Biotin anti-mouse CD19, clone RM4-5 BioLegend 115503; RRID: AB_313638

FITC anti-mouse F4/80, clone BM8 BioLegend 123107; RRID: AB_893500

PE/Dazzle 594 anti-mouse CD172a (SIRPa), clone P84 BioLegend 144015; RRID: AB_2565279

PE anti-mouse XCR1, clone ZET1 BioLegend 148204; RRID: AB_2563843

Chemicals, Peptides, and Recombinant Proteins

Fetal Calf Serum (FCS) Sigma Aldrich F7524

PBS GIBCO/LifeTechnologies 14190-094

RPMI1640 GIBCO/LifeTechnologies 21875-034

Sodium Pyruvate GIBCO/LifeTechnologies 11360-039

HEPES GIBCO/LifeTechnologies 15630-056

Penicillin/Streptomycin solution (100x) GIBCO/LifeTechnologies 15140-122

Collagenase IV (0.5mg/ml) Sigma Aldrich C5138

DNase I (12.5mg/ml) Sigma Aldrich D4263

LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit, for 633

or 635 nm excitation

Invitrogen, ThermoFisher Scientific L10119

Critical Commercial Assays

EasySep Mouse Streptavidin RapidSpheres StemCell Technologies, Inc. 19860A

Deposited Data

RNA sequencing of murine conventional dendritic cell

lineage 1 (cDC1) cells from mesenteric lymph nodes

GEO GSE150549

RNA-seq data of six immune cells (homo sapiens) ArrayExpress E-GEOD-60424

Experimental Models: Organisms/Strains

C57BL6 mice Janvier C57BL6

Software and Algorithms

Bow-tie R package https://github.com/k-niss/bowtie bowtie

R R project Version 3.6.1

FastQC Babraham Bioinformatics Version 0.11.8

STAR RNA-seq aligner https://github.com/alexdobin/STAR Version 2.4.2

Cytoscape Cytoscape.org Version 3.6.1
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for software and data should be directed to and will be fulfilled by the Lead Contact, Søren Brunak

(soren.brunak@cpr.ku.dk).

Materials Availability
This study did not create new unique reagents.

Data and Code Availability
The accession number for the raw and processed RNA-seq data of cDC1 cells frommurine mesenteric lymph nodes reported in this

paper is GEO: GSE150549. Software used to generate wTOmatrices, locate protein complexes and locate bow-tiemotifs is available

as an R package at https://github.com/k-niss/bowtie.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Female 7-10 weeks old C57BL6mice were purchased from Janvier andmaintained at the Biomedical Center (BMC), Lund University.

Animal experiments were performed in accordance with the Lund/Malmö Animal Ethics Committee.

METHOD DETAILS

Cell preparation
Cell suspensions of murine MLN were prepared as previously described (Luda et al., 2016). Briefly, MLN were cut into small pieces

and enzymatically digested with Collagenase IV (0.5 mg/ml, Sigma-Aldrich) and DNase I (12.5 mg/ml, Sigma Aldrich) for 45 min at

37�C while shaking and filtered prior to analysis. To pre-enrich the samples prior to cell sorting, B and T cells were labeled with

biotinylated antibodies to CD19 and CD3, respectively, and depleted by using EasySep Streptavidin RapidSpheres (STEMCELL

Technologies) according to manufacturer’s instructions.

Flow cytometry analysis and cell sorting
MLN cell suspensions were stained with a cocktail of antibodies to CD45 (30-F11), CD3 (17A2), CD19 (6D5), B220 (RA3-6B2), TER-

119 (TER-119), NK-1.1 (PK136), MHC II (IA/I-E) (M5/114.15.2), CD11b (M1/70), CD11c (N418), CD103 (M290), CD64 (X54-5/7.1), F4/

80 (BM8), SIRPa (P84), XCR1 (ZET). CD11c+MHCIIhiXCR-1+CD103+ cDC1 were flow cytometry cell sorted on a FACSAriaII (BD Bio-

sciences) after exclusion of dead cells stained by fixable live/dead near-infrared dye (Life technologies) and cell aggregates (identified

on FSC-A versus FSC-W scatterplots).

Library preparation
Total RNA was isolated using the RNeasy Micro kit (QIAGEN). Briefly, frozen pellets of sorted cells were resuspended in RLT buffer.

Buffer and cells weremixed for 30 s through pipetting and left on the bench for 5min to assure proper lysis. Extraction was performed

according tomanufacturer’s protocol with an on-columnDNase digestion step added after the first wash buffer step. RNAquality and

quantity weremeasured using the 2100 BioAnalyzer equippedwith RNA6000 Pico chip (Agilent Technologies). RNAwas subjected to

whole transcriptome amplification using Ovation RNA-Seq System V2 (NuGEN) kit, following the manufacturer’s protocol. This kit

employs a single primer isothermal amplification (SPIA) method to amplify RNA into double stranded cDNA. Amplified cDNA samples

were purified using theMinElute Reaction Cleanup kit (QIAGEN) according to manufacturer’s instructions. Quantity and quality of the

cDNA samples were measured using the 2100 BioAnalyzer equipped with DNA1000 chip (Agilent technologies) and the Nanodrop

(ThermoFisher Scientific). Libraries to sequence with Illumina platformwere constructed the Ovation Ultralow system V2 kit (NuGEN),

following manufacturer’s instructions. 100ng of amplified cDNA were fragmented by sonication using a Bioruptor Pico (Diagenode).

The sheared cDNA was end-repaired to generate blunt ends, then ligated to Illumina adaptors with indexing tags, followed by

AMPure XP beads purification. The final size distribution of the libraries was evaluated using 2100 Bioanalyzer equipped with

DNA1000 chip (Agilent technologies) and quantified using KAPA library Quantification Kit Illumina platforms (Kapa Biosystems).

mRNA sequencing using Illumina
Equimolar amounts of each sample library (n = 9) were pooled and the pools were used for cluster generation on the cBot with the

Illumina TruSeq SRCluster Kit (v3). Sequencing was performed on an Illumina HiSeq 1000 instrument using indexed 50 cycles single-

read protocol and the TruSeq SBS v3 Reagents according to the Illumina HiSeq 1000 System User Guide. Image analysis and base

calling resulted in BCL files, which were converted to FASTQ files with the CASAVA1.8.2 software. The resulting libraries had a length

of 50 base pairs and 25-40 million reads per sample.
Cell Reports 31, 107763, June 16, 2020 e2
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RNA-seq data analysis of cDC1 data
The quality of the FASTQ files was initially checked using FastQC (Andrews, 2010). The reads were aligned to the ENSEMBL mouse

genome (GRCm38 release 89) using STAR version 2.4.2a (Dobin et al., 2013) with default settings, which also quantified the gene

expression. Gene expression files were preprocessed as recommended in Law et al. (Law et al., 2014). Briefly, genes with a log2

count per million (log2-cpm) of at least 1.0 in three out of nine samples were considered expressed. Raw counts were hereafter trans-

formed using the voom function of the limma R package (Ritchie et al., 2015). The pipeline produced a final table of 10,563 expressed

genes across nine samples.

Analysis of sorted immune cell RNA-seq data
FASTQ files associated with the public dataset ArrayExpress: E-GEOD-60424 (Linsley et al., 2014) were downloaded using the fastq-

dump function from the sratoolkit (v. 2.8.2). High quality sequencing was confirmed using FastQC (Andrews, 2010). Alignment of the

FASTQ files and gene expression quantification was performed as described above in RNA-seq data analysis of cDC1 data. We only

used the samples that were metadata tagged as ‘‘normal,’’ i.e., from healthy patients.

The cDC1-specific protein interactome
To construct the cDC1-specific protein interactome, we used the protein-protein interactome InWeb_IM (Li et al., 2017) as founda-

tion. InWeb_IM contains experimentally generated and scored physical PPIs from mainly H. sapiens (n = 332,385), m. musculus

(n = 169,347) and S. cerevisiae (n = 102,150) (PPI counts from Li et al., 2017). Each PPI is benchmarked against a gold standard

and scored accordingly, summed into a confidence score (cs). Only proteins expressed (defined above) in cDC1 cells were kept

to generate the cDC1-specifc interactome. This method has previously been suggested in Magger et al. (2012) and applied in

Pedersen et al. (2017). Since InWeb_IM is indexed using UniProtKB/Swiss-Prot identifiers ofH. sapiens, the 10,563 ENSMUSG iden-

tifiers ofm. musculus, which represented the expressed genes in cDC1, were first mapped toH. sapiens ENSG identifiers (n = 9,183)

using ortholog pairing and then further mapped toH. sapiensUniProt/Swiss-Prot identifiers (n = 8,984). Themapping was done using

the R package gProfileR (Reimand et al., 2016). The final cDC1-specific interactome contained 8,568 expressed proteins, which had

at least one PPI in the InWeb_IM database.

The cDC1-specific interactome topology
To describe the topology of the cDC1-specific interactome, we calculated the pairwise wTO between all protein pairs. The wTO has

previously been used in an unweighted form in Ravasz et al. (Ravasz et al., 2002) and been refined to its weighted form in Zhang et al.

(Zhang andHorvath, 2005). Given a protein x and a protein y in the interactome andwith a symbolizing a connection strength between

two proteins ð0%a%1Þ, the wTO was calculated using:

wTOxy =
lxy

min
�
kx; ky

�
+ 1� axy

where lxy =
P

u
axuayu is the product of the connection strengths between xwith u and ywith u, where u is a common protein neighbor of

both x and y, summed over all common protein neighbors of x and y. By neighbors, we refer to first order interactors of x and y only.

The term kx =
P

u
kxu is the summed connection strength of protein x to all of its neighbors. For each protein pair x and y, this will

produce a wTO between 0 and 1. Since we based our analysis on InWeb_IM, we used InWeb’s internal confidence score

ð0%cs%1Þ as a measure of inter-protein connection strength. The all proteins versus all proteins wTO matrix was constructed,

resulting in an 8,568 3 8,568 symmetric wTO matrix (36.7 million unique pairwise comparisons).

Matrix and network visualization
We produced a visualization of the cDC1 interactome topology in R by clustering the cDC1 wTO matrix via FlashClust using the un-

weighted pair group method with arithmetic mean (UPGMA) (Langfelder, 2012), which resulted in a meaningful protein order, as pre-

viously demonstrated by Ravasz et al. (Ravasz et al., 2002). We visualized the resulting matrix using the basic R function image with

raster activated, creating a 73.4-megapixel image. All graph visualizations were done in Cytoscape (Smoot et al., 2011).

Bow-tie motif localization in wTO matrix
We used an adjacency matrix of the cDC1 interactome, where each pairwise PPI were represented by its InWeb_IM confidence

score. A score of zero indicated no interaction. The adjacency matrix was sorted row- and column-wise using the protein order of

the hierarchically clustered cDC1 wTO matrix (see Matrix and network visualization). The interaction fans of bow-tie motifs were

observed as line substructures situated between two square substructures, i.e., protein complexes, in the wTO matrix. To locate

all interaction fans, we iterated over each row in the adjacency matrix, searching for strings of interactions that had a length

of > = 10 and where the average confidence score was > = 0.9. We filtered away the strings that represented protein complexes

(see Protein complex localization in wTO matrix) and kept only the strings of interactions that were located between two protein

complexes.
e3 Cell Reports 31, 107763, June 16, 2020
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Protein complex localization in wTO matrix
We used the adjacency matrix described above in localization of bow-tie motifs in the cDC1 interactomematrix. To find protein com-

plexes which were represented by square substructures in the wTOmatrix, we searched for quadrilateral square submatrices on the

diagonal of the adjacency matrix that had a high average confidence score. We used each protein as a ‘‘seed.’’ Around each protein

seed’s position on the diagonal of the adjacency matrix, we first isolated a 3x3 submatrix with the seed in the middle. If the submatrix

had an average confidence score threshold of > 0.75, we expanded the submatrix by 1 protein in each direction, producing a 5x5

submatrix. If that submatrix also passed the 0.75 threshold, we again expanded by +1 in each direction and continued until (i) the

average confidence score got below the threshold or (ii) we reached a 500x500 submatrix. The position of the largest submatrix

for each seed protein was saved. Overlapping submatrices were merged and a minimum size of 9x9 proteins was enforced.

We chose an average confidence score threshold of > 0.75, as we found by visual inspection that this value was good at high-

lighting the dark submatrices on the diagonal in the PPI adjacency matrix (See red highlights in supplementary Figure S2). Further-

more, a stability test of average confidence scores showed that thresholds values between 0.65 to 0.85 produced a largely similar

number of protein complexes (Figure S1).

DISEASES and COMPARTMENTS databases
To obtain protein sets related to diseases, we downloaded the filtered knowledge channel from the DISEASE database (https://

diseases.jensenlab.org/downloads) on April 2019. We only used proteins who had a confidence score of four or more. The ENSP

identifiers used in the DISEASE database were converted into UNIPROT identifiers using the gconvert function of gProfiler. To obtain

the subcellular location of each protein, we downloaded the data of the human integrated channel from the COMPARMENTS data-

base (http://compartments.jensenlab.org/downloads) on April 2019. We again only used proteins with a confidence score of four or

more. To limit redundancy, we only used the following compartment terms: Mitochondrion, Golgi apparatus, Endoplasmic reticulum,

Cytosol, Lysosome, Endosome, Peroxisome, Plasma membrane, Cytoskeleton, Nucleus, Extracellular region.

Membraneless organelles
For enrichment permutation test of ‘‘knot’’ proteins in membraneless organelles, we tested for a significant overlap between the

‘‘knot’’ protein set and ten different protein sets of membraneless organelles, as defined by their gene ontology term: Nucleolus

(GO:0005730), Cajal body (GO:0015030), Nuclear speck (GO:0016607), Paraspeckle (GO:0042382), Histone locus body

(GO:0035363), PML body (GO:0016605), P body (GO:0000932), Cytoplasmic stress granule (GO:0010494), Nuclear stress granule

(GO:0097165) and P granule (GO:0043186). To test for enrichment of proteins belonging to membraneless organelles in our protein

complexes, we performed a gene ontology test with gProfiler (Reimand et al., 2016) testing only for enrichment of cellular component

GO terms and using the cDC1 protein interactome as custom background. We hereafter checked if any of the above-listed ten GO

terms were found enriched.

Protein mass, domains and isoforms
Information on protein mass, domains and isoforms were obtained by querying all 8,568 proteins of the cDC1-specifc protein inter-

actome via uniprot.org, exporting the data table and extracting information from the Alternative products (isoforms), Domain and

Mass columns. Data was obtained February 2019.

QUANTIFICATION AND STATISTICAL ANALYSIS

For the permutation tests, we compared the specified value (mean protein mass, number of associated gene ontologies, etc.) of the

‘‘knot’’ protein set to 10,000 other random protein sets of the same size (n = 294). The random protein sets were either sampled using

a random approach without replacement or by a random degree-adjusted approach without replacement. For the degree-adjusted

approach, we assigned all of the 8,568 proteins in the cDC1-specific interactome into 40 different bins depending on the number

of PPIs that each protein had, i.e., their degree. This produced 40 bins with about 215 proteins in each. To create a random de-

gree-adjusted sample of 294 proteins, we picked out random proteins from the bins that corresponded to the ones wherein

the ‘‘knot’’ proteins were assigned. We hereby obtained random protein sets with a degree distribution similar to that of the

‘‘knot’’ proteins. An enrichment P value was calculated by summing the number of times a random protein set out of 10,000

had a value higher than or equal to that of the ‘‘knot’’ protein set. This sum was divided by 10,000 to generate a P value. For the

underrepresentation P value, the number of times a random protein set value was lower than or equal to that of the ‘‘knot’’ protein

set value was summed.
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