48 research outputs found

    How the hydrogen bond in NH4_4F is revealed with Compton scattering

    Full text link
    In order to probe electron wave functions involved in the bonding of NH4_4F, we have performed Compton scattering experiments in an oriented single crystal and in a powder. Ab initio calculations of the Compton profiles for NH4_4F and NH4_4Cl are used to enlighten the nature of the bonds in the NH4_4F crystal. As a consequence, we are able to show significant charge transfer in the ammonium ion which is not observable using other methods. Our study provides a compelling proof for hydrogen bond formation in NH4_4F.Comment: 4 pages, 5 figures, accepted for publication as a Regular Article in Physical Review

    \u3cem\u3eIn situ\u3c/em\u3e pressure study of Rb\u3csub\u3e4\u3c/sub\u3eC\u3csub\u3e60\u3c/sub\u3e insulator to metal transition by Compton scattering

    Get PDF
    Compton scattering has been shown to be a powerful tool for studying the ground state electronic density in real materials. Using synchrotron radiation, we have studied pressure effects on Rb4C60 by measuring the Compton profiles below and above the insulator to metal transition at 0.8 GPa. The experimental results are compared with the corresponding calculated results, obtained from new ab initio energy band structure calculations. These results allow us to quantitatively evaluate contributions to the Compton profiles resulting from the contraction of the unit cell as well as from the contraction of the C60 molecule itself. In this paper, we point out an unexpected contraction of the volume of the C60 molecule, leading to a major effect on the electronic density of the Rb4C60 compound

    Superconductivity of bulk CaC6

    Full text link
    We have obtained bulk samples of the graphite intercalation compound, CaC6, by a novel method of synthesis from highly oriented pyrolytic graphite. The crystal structure has been completely determined showing that it is the only member of the MC6, metal-graphite compounds, which has rhombohedral symmetry. We have clearly shown the occurrence of superconductivity in the bulk sample at 11.5K, using magnetization measurements.Comment: 8 pages of text + 4 figures = 12 page

    Oxygen disorder in ice probed by X-ray Compton scattering

    Full text link
    We use electron momentum density in ice as a tool to quantify order-disorder transitions by comparing Compton profiles differences of ice VI, VII, VIII and XII with respect to ice Ih. Quantitative agreement is found between theory and experiment for ice VIII, which is the most ordered phase. Robust signatures of the oxygen disorder are identified in the momentum density for the VIII-VII ice phase transition. The unique aspect of this work is the determination of the fraction n_e of electron directly involved in phase transitions as well as the use of position space signatures for quantifying oxygen site disorder.Comment: 3 figures, 2 tables. Accepted for publication in Phys. Rev.

    Imaging in the time of NFD/NSF: do we have to change our routines concerning renal insufficiency?

    Get PDF
    To date there are potential chronology-based but not conclusive reasons to believe that at least some of the gadolinium complexes play a causative role in the pathophysiology of nephrogenic systemic fibrosis (NSF) or nephrogenic fibrosing dermopathy (NFD). Still, the exact pathogenesis and the risk for patients is unclear beside the obvious connection to moderate to severe renal insufficiency. So far, MR imaging with Gd-enhancement was regarded as the safest imaging modality in these patients—the recent development creates tremendous uncertainty in the MR-community. Nevertheless, one should remember that, despite the over 200 cases of NSF and about 100 with proven involvement of Gd3+, the vast majority of over 200 million patients exposed to gadolinium since the 1980s have tolerated these agents well. Importantly, NSF is a rare disease and does not appear to occur in patients without renal impairment. Many patients and researchers have undergone MR investigations with Gd exposure in the past. For those, it is essential to know about the safety of the agents at normal renal function. We can hope that pharmacoepidemiological and preclinical studies will allow us to better understand the pathophysiology and role of the various MR contrast agents in the near future

    Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae)

    Get PDF
    Background: Cucurbita pepo belongs to the Cucurbitaceae family. The "Zucchini" types rank among the highest-valued vegetables worldwide, and other C. pepo and related Cucurbita spp., are food staples and rich sources of fat and vitamins. A broad range of genomic tools are today available for other cucurbits that have become models for the study of different metabolic processes. However, these tools are still lacking in the Cucurbita genus, thus limiting gene discovery and the process of breeding.Results: We report the generation of a total of 512,751 C. pepo EST sequences, using 454 GS FLX Titanium technology. ESTs were obtained from normalized cDNA libraries (root, leaves, and flower tissue) prepared using two varieties with contrasting phenotypes for plant, flowering and fruit traits, representing the two C. pepo subspecies: subsp. pepo cv. Zucchini and subsp. ovifera cv Scallop. De novo assembling was performed to generate a collection of 49,610 Cucurbita unigenes (average length of 626 bp) that represent the first transcriptome of the species. Over 60% of the unigenes were functionally annotated and assigned to one or more Gene Ontology terms. The distributions of Cucurbita unigenes followed similar tendencies than that reported for Arabidopsis or melon, suggesting that the dataset may represent the whole Cucurbita transcriptome. About 34% unigenes were detected to have known orthologs of Arabidopsis or melon, including genes potentially involved in disease resistance, flowering and fruit quality. Furthermore, a set of 1,882 unigenes with SSR motifs and 9,043 high confidence SNPs between Zucchini and Scallop were identified, of which 3,538 SNPs met criteria for use with high throughput genotyping platforms, and 144 could be detected as CAPS. A set of markers were validated, being 80% of them polymorphic in a set of variable C. pepo and C. moschata accessions.Conclusion: We present the first broad survey of gene sequences and allelic variation in C. pepo, where limited prior genomic information existed. The transcriptome provides an invaluable new tool for biological research. The developed molecular markers are the basis for future genetic linkage and quantitative trait loci analysis, and will be essential to speed up the process of breeding new and better adapted squash varieties. © 2011 Blanca et al; licensee BioMed Central Ltd.Blanca Postigo, JM.; Cañizares Sales, J.; Roig Montaner, MC.; Ziarsolo Areitioaurtena, P.; Nuez Viñals, F.; Picó Sirvent, MB. (2011). Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics. 12:104-117. doi:10.1186/1471-2164-12-104S1041171

    Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alfalfa, [<it>Medicago sativa </it>(L.) sativa], a widely-grown perennial forage has potential for development as a cellulosic ethanol feedstock. However, the genomics of alfalfa, a non-model species, is still in its infancy. The recent advent of RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an opportunity to expand the identification of alfalfa genes and polymorphisms, and conduct in-depth transcript profiling.</p> <p>Results</p> <p>Cell walls in stems of alfalfa genotype 708 have higher cellulose and lower lignin concentrations compared to cell walls in stems of genotype 773. Using the Illumina GA-II platform, a total of 198,861,304 expression sequence tags (ESTs, 76 bp in length) were generated from cDNA libraries derived from elongating stem (ES) and post-elongation stem (PES) internodes of 708 and 773. In addition, 341,984 ESTs were generated from ES and PES internodes of genotype 773 using the GS FLX Titanium platform. The first alfalfa (<it>Medicago sativa</it>) gene index (MSGI 1.0) was assembled using the Sanger ESTs available from GenBank, the GS FLX Titanium EST sequences, and the <it>de novo </it>assembled Illumina sequences. MSGI 1.0 contains 124,025 unique sequences including 22,729 tentative consensus sequences (TCs), 22,315 singletons and 78,981 pseudo-singletons. We identified a total of 1,294 simple sequence repeats (SSR) among the sequences in MSGI 1.0. In addition, a total of 10,826 single nucleotide polymorphisms (SNPs) were predicted between the two genotypes. Out of 55 SNPs randomly selected for experimental validation, 47 (85%) were polymorphic between the two genotypes. We also identified numerous allelic variations within each genotype. Digital gene expression analysis identified numerous candidate genes that may play a role in stem development as well as candidate genes that may contribute to the differences in cell wall composition in stems of the two genotypes.</p> <p>Conclusions</p> <p>Our results demonstrate that RNA-Seq can be successfully used for gene identification, polymorphism detection and transcript profiling in alfalfa, a non-model, allogamous, autotetraploid species. The alfalfa gene index assembled in this study, and the SNPs, SSRs and candidate genes identified can be used to improve alfalfa as a forage crop and cellulosic feedstock.</p

    Pressure dependence of phonons in Rb4C60 studied with Raman spectroscopy

    No full text
    International audienceRaman spectra of Rb4C60 have been measured as a function of pressure up to 8 GPa at room temperature. Intramolecular modes exhibit three remarkable changes around 0.6, 1.7, and 4 GPa. An increase in the pressure slopes of various mode frequencies occurs at 0.6 GPa. Then an overall decrease in the pressure slopes occurs around 1.7 GPa. Finally, we observe the new lines appearing around 4 GPa. These effects are discussed in terms of reduction in the symmetry of the C60 molecule and electron hopping

    Investigation of Electronic Density in C60\text{}_{60} by Compton Scattering

    No full text
    High-resolution measurements of Compton profiles on C60\text{}_{60} as well as Kx\text{}_{x} C60\text{}_{60} have been carried out using 16 keV photons at LURE (Orsay, France) and at ESRF (Grenoble, France). Theoretical profiles are obtained using the plane wave expansion of wave functions from an ab-initio self-consistent field calculation of the energy band-structure. The linear combination of atomic orbitals method within the local-density-approximation has been employed for the calculation. In all cases, the agreement between theory and experiment is excellent. The C60\text{}_{60} profiles indicate substantially greater delocalization of the ground-state charge density, compared to graphite. We have demonstrated, both by experiment and calculation, that the delocalization in C60\text{}_{60} is mainly a molecular effect
    corecore