1,727 research outputs found

    Impurity transport in Alcator C-Mod in the presence of poloidal density variation induced by ion cyclotron resonance heating

    Full text link
    Impurity particle transport in an ion cyclotron resonance heated Alcator C-Mod discharge is studied with local gyrokinetic simulations and a theoretical model including the effect of poloidal asymmetries and elongation. In spite of the strong minority temperature anisotropy in the deep core region, the poloidal asymmetries are found to have a negligible effect on the turbulent impurity transport due to low magnetic shear in this region, in agreement with the experimental observations. According to the theoretical model, in outer core regions poloidal asymmetries may contribute to the reduction of the impurity peaking, but uncertainties in atomic physics processes prevent quantitative comparison with experiments.Comment: 32 pages, 12 figure

    A Single Wearable Sensor for Gait Analysis in Parkinson’s Disease: A Preliminary Study

    Get PDF
    Movement monitoring in patients with Parkinson’s disease (PD) is critical for quantifying disease progression and assessing how a subject responds to medication administration over time. In this work, we propose a continuous monitoring system based on a single wearable sensor placed on the lower back and an algorithm for gait parameters evaluation. In order to preliminarily validate the proposed system, seven PD subjects took part in an experimental protocol in preparation for a larger randomized controlled study. We validated the feasibility of our algorithm in a constrained environment through a laboratory scenario. Successively, it was tested in an unsupervised environment, such as the home scenario, for a total of almost 12 h of daily living activity data. During all phases of the experimental protocol, videos were shot to document the tasks. The obtained results showed a good accuracy of the proposed algorithm. For all PD subjects in the laboratory scenario, the algorithm for step identification reached a percentage error low of 2%, 99.13% of sensitivity and 100% of specificity. In the home scenario the Bland–Altman plot showed a mean difference of −3.29 and −1 between the algorithm and the video recording for walking bout detection and steps identification, respectively

    Investigation of rare nuclear decays with BaF2_2 crystal scintillator contaminated by radium

    Full text link
    The radioactive contamination of a BaF2_2 scintillation crystal with mass of 1.714 kg was measured over 101 hours in the low-background DAMA/R&D set-up deep underground (3600 m w.e.) at the Gran Sasso National Laboratories of INFN (LNGS, Italy). The half-life of 212^{212}Po (present in the crystal scintillator due to contamination by radium) was measured as T1/2(212T_{1/2}(^{212}Po) = 298.8±\pm0.8(stat.)±\pm1.4(syst.) ns by analysis of the events' pulse profiles. The 222^{222}Rn nuclide is known as 100% decaying via emission of α\alpha particle with T1/2T_{1/2} = 3.82 d; however, its β\beta decay is also energetically allowed with Qβ=24±21Q_\beta = 24\pm21 keV. Search for decay chains of events with specific pulse shapes characteristic for α\alpha or for β/γ\beta/\gamma signals and with known energies and time differences allowed us to set, for the first time, the limit on the branching ratio of 222^{222}Rn relatively to β\beta decay as Bβ<0.13B_\beta < 0.13% at 90% C.L. (equivalent to limit on partial half-life T1/2β>8.0T_{1/2}^\beta > 8.0 y). Half-life limits of 212^{212}Pb, 222^{222}Rn and 226^{226}Ra relatively to 2β2\beta decays are also improved in comparison with the earlier results.Comment: 10 pages, 9 figures, 2 table

    Search for double beta decay of 136^{136}Ce and 138^{138}Ce with HPGe gamma detector

    Full text link
    Search for double β\beta decay of 136^{136}Ce and 138^{138}Ce was realized with 732 g of deeply purified cerium oxide sample measured over 1900 h with the help of an ultra-low background HPGe γ\gamma detector with a volume of 465 cm3^3 at the STELLA facility of the Gran Sasso National Laboratories of the INFN (Italy). New improved half-life limits on double beta processes in the cerium isotopes were set at the level of limT1/210171018\lim T_{1/2}\sim 10^{17}-10^{18}~yr; many of them are even two orders of magnitude larger than the best previous results.Comment: 21 pages, 6 figures, 3 tables; version accepted for publication on Nucl. Phys.

    Search for long-lived superheavy eka-tungsten with radiopure ZnWO4_4 crystal scintillator

    Get PDF
    The data collected with a radioactively pure ZnWO4_4 crystal scintillator (699 g) in low background measurements during 2130 h at the underground (3600 m w.e.) Laboratori Nazionali del Gran Sasso (INFN, Italy) were used to set a limit on possible concentration of superheavy eka-W (seaborgium Sg, Z = 106) in the crystal. Assuming that one of the daughters in a chain of decays of the initial Sg nucleus decays with emission of high energy α\alpha particle (Qα>8Q_\alpha > 8 MeV) and analyzing the high energy part of the measured α\alpha spectrum, the limit N(Sg)/N(W) < 5.5 ×\times 1014^{-14} atoms/atom at 90% C.L. was obtained (for Sg half-life of 109^9 yr). In addition, a limit on the concentration of eka-Bi was set by analysing the data collected with a large BGO scintillation bolometer in an experiment performed by another group [L. Cardani et al., JINST 7 (2012) P10022]: N(eka-Bi)/N(Bi) < 1.1 ×\times 1013^{-13} atoms/atom with 90% C.L. Both the limits are comparable with those obtained in recent experiments which instead look for spontaneous fission of superheavy elements or use the accelerator mass spectrometry.Comment: 9 pages, 2 figures; in press on Physica Script

    The event generator DECAY4 for simulation of double beta processes and decay of radioactive nuclei

    Full text link
    The computer code DECAY4 is developed to generate initial energy, time and angular distributions of particles emitted in radioactive decays of nuclides and nuclear (atomic) deexcitations. Data for description of nuclear and atomic decay schemes are taken from the ENSDF and EADL database libraries. The examples of use of the DECAY4 code in several underground experiments are described.Comment: 8 pages, 1 fi

    New limits on 2ε2\varepsilon, εβ+\varepsilon\beta^+ and 2β+2\beta^+ decay of 136^{136}Ce and 138^{138}Ce with deeply purified cerium sample

    Full text link
    A search for double electron capture (2ε2\varepsilon), electron capture with positron emission (εβ+\varepsilon\beta^+), and double positron emission 2β+2\beta^+) in 136^{136}Ce and 138^{138}Ce was realized with a 465 cm3^3 ultra-low background HP Ge γ\gamma spectrometer over 2299 h at the Gran Sasso underground laboratory. A 627 g sample of cerium oxide deeply purified by liquid-liquid extraction method was used as a source of γ\gamma quanta expected in double β\beta decay of the cerium isotopes. New improved half-life limits were set on different modes and channels of double β\beta decay of 136^{136}Ce and 138^{138}Ce at the level of T1/2>10171018T_{1/2}>10^{17}-10^{18} yr.Comment: 19 pages, 6 figures, 2 table

    Local and global Fokker-Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal

    Full text link
    In transport barriers, particularly H-mode edge pedestals, radial scale lengths can become comparable to the ion orbit width, causing neoclassical physics to become radially nonlocal. In this work, the resulting changes to neoclassical flow and current are examined both analytically and numerically. Steep density gradients are considered, with scale lengths comparable to the poloidal ion gyroradius, together with strong radial electric fields sufficient to electrostatically confine the ions. Attention is restricted to relatively weak ion temperature gradients (but permitting arbitrary electron temperature gradients), since in this limit a delta-f (small departures from a Maxwellian distribution) rather than full-f approach is justified. This assumption is in fact consistent with measured inter-ELM H-Mode edge pedestal density and ion temperature profiles in many present experiments, and is expected to be increasingly valid in future lower collisionality experiments. In the numerical analysis, the distribution function and Rosenbluth potentials are solved for simultaneously, allowing use of the exact field term in the linearized Fokker-Planck collision operator. In the pedestal, the parallel and poloidal flows are found to deviate strongly from the best available conventional neoclassical prediction, with large poloidal variation of a different form than in the local theory. These predicted effects may be observable experimentally. In the local limit, the Sauter bootstrap current formulae appear accurate at low collisionality, but they can overestimate the bootstrap current near the plateau regime. In the pedestal ordering, ion contributions to the bootstrap and Pfirsch-Schluter currents are also modified

    First search for double-beta decay of 184Os and 192Os

    Full text link
    A search for double-beta decay of osmium has been realized for the first time with the help of an ultra-low background HPGe gamma detector at the underground Gran Sasso National Laboratories of the INFN (Italy). After 2741 h of data taking with a 173 g ultra-pure osmium sample limits on double-beta processes in 184Os have been established at the level of T_{1/2} about 10^{14}-10^{17} yr. Possible resonant double-electron captures in 184Os were searched for with a sensitivity T_{1/2} about 10^{16} yr. A half-life limit T_{1/2} > 5.3 10^{19} yr was set for the double-beta decay of 192Os to the first excited level of 192Pt. The radiopurity of the osmium sample has been investigated and radionuclides 137Cs, 185Os and 207Bi were detected in the sample, while activities of 40K, 60Co, 226Ra and 232Th were limited at the mBq/kg level.Comment: 12 pages, 7 figures, 2 table
    corecore