47 research outputs found

    MORPHOLOGY-BASED MODELLING OF PENICILLIUM CHRYSOGENUM FED-BATCH CULTIVATIONS

    Get PDF
    The presented models combine microscopic and macroscopic descriptions of pellet development. There are still some assumptions in the model which are difficult to verify experimentally like the inactivation of the biomass as a consequence of mechanical damage. However, we presented a novel approach which allows to study influences on the overall process such as substrate limitations within the pellets, hyphal morphology or mechanical forces

    The impact of lepton-flavor violating Z' bosons on muon g-2 and other muon observables

    Get PDF
    A lepton-flavor violating (LFV) Z' boson may mimic some of the phenomena usually attributed to supersymmetric theories. Using a conservative model of LFV Z' bosons, the recent BNL E821 muon g-2 deviation allows for a LFV Z' interpretation with a boson mass up to 4.8 TeV while staying within limits set by muon conversion, mu -> e gamma, and mu -> eee. This model is immediately testable as one to twenty e^+e^- -> mu tau events are predicted for an analysis of the LEP II data. Future muon conversion experiments, MECO and PRIME, are demonstrated to have potential to probe very high boson masses with very small charges, such as a 10 TeV boson with an e-mu charge of 10^-5. Furthermore, the next linear collider is shown to be highly complementary with muon conversion experiments, which are shown to provide the strictest and most relevant bounds on LFV phenomena.Comment: 17 pages, 6 figures, uses feynMF, edited references (v2), corrected MEGA experimental limit (v3), accepted to Phys. Rev.

    Minimal lepton flavor violating realizations of minimal seesaw models

    Full text link
    We study the implications of the global U(1)R symmetry present in minimal lepton flavor violating implementations of the seesaw mechanism for neutrino masses. In the context of minimal type I seesaw scenarios with a slightly broken U(1)R, we show that, depending on the R-charge assignments, two classes of generic models can be identified. Models where the right-handed neutrino masses and the lepton number breaking scale are decoupled, and models where the parameters that slightly break the U(1)R induce a suppression in the light neutrino mass matrix. We show that within the first class of models, contributions of right-handed neutrinos to charged lepton flavor violating processes are severely suppressed. Within the second class of models we study the charged lepton flavor violating phenomenology in detail, focusing on mu to e gamma, mu to 3e and mu to e conversion in nuclei. We show that sizable contributions to these processes are naturally obtained for right-handed neutrino masses at the TeV scale. We then discuss the interplay with the effects of the right-handed neutrino interactions on primordial B - L asymmetries, finding that sizable right-handed neutrino contributions to charged lepton flavor violating processes are incompatible with the requirement of generating (or even preserving preexisting) B - L asymmetries consistent with the observed baryon asymmetry of the Universe.Comment: 21 pages, 4 figures; version 2: Discussion on possible generic models extended, typos corrected, references added. Version matches publication in JHE

    Constraints on a Massive Dirac Neutrino Model

    Full text link
    We examine constraints on a simple neutrino model in which there are three massless and three massive Dirac neutrinos and in which the left handed neutrinos are linear combinations of doublet and singlet neutrinos. We examine constraints from direct decays into heavy neutrinos, indirect effects on electroweak parameters, and flavor changing processes. We combine these constraints to examine the allowed mass range for the heavy neutrinos of each of the three generations.Comment: latex, 29 pages, 7 figures (not included), MIT-CTP-221

    Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution

    Get PDF
    In minimal supersymmetric models the ZZ-penguin usually provides sub-dominant contributions to charged lepton flavour violating observables. In this study, we consider the supersymmetric inverse seesaw in which the non-minimal particle content allows for dominant contributions of the ZZ-penguin to several lepton flavour violating observables. In particular, and due to the low-scale (TeV) seesaw, the penguin contribution to, for instance, \Br(\mu \to 3e) and μe\mu-e conversion in nuclei, allows to render some of these observables within future sensitivity reach. Moreover, we show that in this framework, the ZZ-penguin exhibits the same non-decoupling behaviour which had previously been identified in flavour violating Higgs decays in the Minimal Supersymmetric Standard Model.Comment: 29 pages, 9 figures, 4 tables; v2: minor corrections, version to appear in JHE

    Flavor Violating Higgs Decays

    Full text link
    We study a class of nonstandard interactions of the newly discovered 125 GeV Higgs-like resonance that are especially interesting probes of new physics: flavor violating Higgs couplings to leptons and quarks. These interaction can arise in many frameworks of new physics at the electroweak scale such as two Higgs doublet models, extra dimensions, or models of compositeness. We rederive constraints on flavor violating Higgs couplings using data on rare decays, electric and magnetic dipole moments, and meson oscillations. We confirm that flavor violating Higgs boson decays to leptons can be sizeable with, e.g., h -> tau mu and h -> tau e branching ratios of order 10% perfectly allowed by low energy constraints. We estimate the current LHC limits on h -> tau mu and h -> tau e decays by recasting existing searches for the SM Higgs in the tau-tau channel and find that these bounds are already stronger than those from rare tau decays. We also show that these limits can be improved significantly with dedicated searches and we outline a possible search strategy. Flavor violating Higgs decays therefore present an opportunity for discovery of new physics which in some cases may be easier to access experimentally than flavor conserving deviations from the Standard Model Higgs framework.Comment: 39 pages, 12 figures, 3 tables; v2: Improved referencing, updated mu -> 3e bounds to include large loop contributions, corrected single top constraints; conclusions unchanged; matches version to be published in JHEP; v3: included 2-loop contributions in mu -> e conversion, improved discussion of tau -> 3 mu and of EDM constraints on FV top-Higgs couplings; conclusions unchange

    Lepton Flavor Violation in the Two Higgs Doublet Model type III

    Get PDF
    We consider the Two Higgs Doublet Model (2HDM) of type III which leads to Flavour Changing Neutral Currents (FCNC) at tree level in the leptonic sector. In the framework of this model we can have, in principle, two situations: the case (a) when both doublets acquire a vacuum expectation value different from zero and the case (b) when only one of them is not zero. In addition, we show that we can make two types of rotations for the flavor mixing matrices which generates four types of lagrangians, with the rotation of type I we recover the case (b) from the case (a) in the limit tanβ\tan \beta \to \infty , and with the rotation of type II we obtain the case (b) from (a) in the limit tanβ0.\tan \beta \to 0. Moreover, two of the four possible lagrangians correspond to the models of types I and II plus Flavor Changing (FC) interactions. The analitical expressions of the partial lepton number violating widths Γ(μeee)\Gamma (\mu \to eee) and Γ(μeγ)\Gamma (\mu \to e\gamma) are derived for the cases (a) and (b) and both types of rotations. In all cases these widths go asymptotically to zero in the decoupling limit for all Higgses. We present from our analysis upper bounds for the flavour changing transition μe,\mu \to e, and we show that such bounds are sensitive to the VEV structure and the type of rotation utilized.Comment: 7 pages RevTeX4, 4 figures postscript, new section added and some new reference

    Muon to electron conversion in the Littlest Higgs model with T-parity

    Full text link
    Little Higgs models provide a natural explanation of the little hierarchy between the electroweak scale and a few TeV scale, where new physics is expected. Under the same inspiring naturalness arguments, this work completes a previous study on lepton flavor-changing processes in the Littlest Higgs model with T-parity exploring the channel that will eventually turn out to be the most sensitive, \mu-e conversion in nuclei. All one-loop contributions are carefully taken into account, results for the most relevant nuclei are provided and a discussion of the influence of the quark mixing is included. The results for the Ti nucleus are in good agreement with earlier work by Blanke et al., where a degenerate mirror quark sector was assumed. The conclusion is that, although this particular model reduces the tension with electroweak precision tests, if the restrictions on the parameter space derived from lepton flavor violation are taken seriously, the degree of fine tuning necessary to meet these constraints also disfavors this model.Comment: 26 pages, 7 figures, 4 tables; discussion improved, results unchanged, one reference added, version to appear in JHE

    Examining leptogenesis with lepton flavor violation and the dark matter abundance

    Full text link
    Within a supersymmetric (SUSY) type-I seesaw framework with flavor-blind universal boundary conditions, we study the consequences of requiring that the observed baryon asymmetry of the Universe be explained by either thermal or non-thermal leptogenesis. In the former case, we find that the parameter space is very constrained. In the bulk and stop-coannihilation regions of mSUGRA parameter space (that are consistent with the measured dark matter abundance), lepton flavor-violating (LFV) processes are accessible at MEG and future experiments. However, the very high reheat temperature of the Universe needed after inflation (of about 10^{12} GeV) leads to a severe gravitino problem, which disfavors either thermal leptogenesis or neutralino dark matter. Non-thermal leptogenesis in the preheating phase from SUSY flat directions relaxes the gravitino problem by lowering the required reheat temperature. The baryon asymmetry can then be explained while preserving neutralino dark matter, and for the bulk or stop-coannihilation regions LFV processes should be observed in current or future experiments.Comment: 20 pages, 5 figures, 1 tabl

    Constraints from muon g-2 and LFV processes in the Higgs Triplet Model

    Full text link
    Constraints from the muon anomalous magnetic dipole moment and lepton flavor violating processes are translated into lower bounds on v_Delta*m_H++ in the Higgs Triplet Model by considering correlations through the neutrino mass matrix. The discrepancy of the sign of the contribution to the muon anomalous magnetic dipole moment between the measurement and the prediction in the model is clarified. It is shown that mu to e gamma, tau decays (especially, tau to mu e e), and the muonium conversion can give a more stringent bound on v_Delta*m_H++ than the bound from mu to eee which is expected naively to give the most stringent one.Comment: 18 pages, 16 figure
    corecore