1,023 research outputs found

    Securing Remote Access Inside Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) that are being increasingly deployed in communities and public places provide a relatively stable routing infrastructure and can be used for diverse carrier-managed services. As a particular example we consider the scenario where a mobile device initially registered for the use with one wireless network (its home network) moves to the area covered by another network inside the same mesh. The goal is to establish a secure access to the home network using the infrastructure of the mesh. Classical mechanisms such as VPNs can protect end-to-end communication between the mobile device and its home network while remaining transparent to the routing infrastructure. In WMNs this transparency can be misused for packet injection leading to the unnecessary consumption of the communication bandwidth. This may have negative impact on the cooperation of mesh routers which is essential for the connection establishment. In this paper we describe how to establish remote connections inside WMNs while guaranteeing secure end-to-end communication between the mobile device and its home network and secure transmission of the corresponding packets along the underlying multi-hop path. Our solution is a provably secure, yet lightweight and round-optimal remote network access protocol in which intermediate mesh routers are considered to be part of the security architecture. We also sketch some ideas on the practical realization of the protocol using known standards and mention extensions with regard to forward secrecy, anonymity and accounting

    Analysis of property-preservation capabilities of the ROX and ESh hash domain extenders

    Get PDF
    Two of the most recent and powerful multi-property preserving (MPP) hash domain extension transforms are the Ramdom-Oracle-XOR (ROX) transform and the Enveloped Shoup (ESh) transform. The former was proposed by Andreeva et al. at ASIACRYPT 2007 and the latter was proposed by Bellare and Ristenpart at ICALP 2007. In the existing literature, ten notions of security for hash functions have been considered in analysis of MPP capabilities of domain extension transforms, namely CR, Sec, aSec, eSec (TCR), Pre, aPre, ePre, MAC, PRF, PRO. Andreeva et al. showed that ROX is able to preserve seven properties; namely collision resistance (CR), three flavors of second preimage resistance (Sec, aSec, eSec) and three variants of preimage resistance (Pre, aPre, ePre). Bellare and Ristenpart showed that ESh is capable of preserving five important security notions; namely CR, message authentication code (MAC), pseudorandom function (PRF), pseudorandom oracle (PRO), and target collision resistance (TCR). Nonetheless, there is no further study on these two MPP hash domain extension transforms with regard to the other properties. The aim of this paper is to fill this gap. Firstly, we show that ROX does not preserve two other widely-used and important security notions, namely MAC and PRO. We also show a positive result about ROX, namely that it also preserves PRF. Secondly, we show that ESh does not preserve other four properties, namely Sec, aSec, Pre, and aPre. On the positive side we show that ESh can preserve ePre property. Our results in this paper provide a full picture of the MPP capabilities of both ROX and ESh transforms by completing the property-preservation analysis of these transforms in regard to all ten security notions of interest, namely CR, Sec, aSec, eSec (TCR), Pre, aPre, ePre, MAC, PRF, PRO

    Nonce-Based Cryptography: Retaining Security when Randomness Fails

    Get PDF
    We take nonce-based cryptography beyond symmetric encryption, developing it as a broad and practical way to mitigate damage caused by failures in randomness, whether inadvertent (bugs) or malicious (subversion). We focus on definitions and constructions for nonce-based public-key encryption and briefly treat nonce-based signatures. We introduce and construct hedged extractors as a general tool in this domain. Our nonce-based PKE scheme guarantees that if the adversary wants to violate IND-CCA security then it must do both of the following: (1) fully compromise the RNG (2) penetrate the sender system to exfiltrate a seed used by the sende

    Boosting OMD for Almost Free Authentication of Associated Data

    Get PDF
    We propose pure OMD (p-OMD) as a new variant of the Offset Merkle-Damgård (OMD) authenticated encryption scheme. Our new scheme inherits all desirable security features of OMD while having a more compact structure and providing higher efficiency. The original OMD scheme, as submitted to the CAESAR competition, couples a single pass of a variant of the Merkle-Damgård (MD) iteration with the counter-based XOR MAC algorithm to provide privacy and authenticity. Our improved p-OMD scheme dispenses with the XOR MAC algorithm and is purely based on the MD iteration; hence, the name ``pure'' OMD. To process a message of \ell blocks and associated data of aa blocks, OMD needs +a+2\ell+a+2 calls to the compression function while p-OMD only requires max{,a\ell, a}+22 calls. Therefore, for a typical case where a\ell \geq a, p-OMD makes just +2\ell+2 calls to the compression function; that is, associated data is processed almost freely compared to OMD. We prove the security of p-OMD under the same standard assumption (pseudo-randomness of the compression function) as made in OMD; moreover, the security bound for p-OMD is the same as that of OMD, showing that the modifications made to boost the performance are without any loss of security

    Trusty URIs: Verifiable, Immutable, and Permanent Digital Artifacts for Linked Data

    Get PDF
    To make digital resources on the web verifiable, immutable, and permanent, we propose a technique to include cryptographic hash values in URIs. We call them trusty URIs and we show how they can be used for approaches like nanopublications to make not only specific resources but their entire reference trees verifiable. Digital artifacts can be identified not only on the byte level but on more abstract levels such as RDF graphs, which means that resources keep their hash values even when presented in a different format. Our approach sticks to the core principles of the web, namely openness and decentralized architecture, is fully compatible with existing standards and protocols, and can therefore be used right away. Evaluation of our reference implementations shows that these desired properties are indeed accomplished by our approach, and that it remains practical even for very large files.Comment: Small error corrected in the text (table data was correct) on page 13: "All average values are below 0.8s (0.03s for batch mode). Using Java in batch mode even requires only 1ms per file.

    APE: Authenticated Permutation-Based Encryption for Lightweight Cryptography

    Get PDF
    The domain of lightweight cryptography focuses on cryptographic algorithms for extremely constrained devices. It is very costly to avoid nonce reuse in such environments, because this requires either a hardware source of randomness, or non-volatile memory to store a counter. At the same time, a lot of cryptographic schemes actually require the nonce assumption for their security. In this paper, we propose APE as the first permutation-based authenticated encryption scheme that is resistant against nonce misuse. We formally prove that APE is secure, based on the security of the underlying permutation. To decrypt, APE processes the ciphertext blocks in reverse order, and uses inverse permutation calls. APE therefore requires a permutation that is both efficient for forward and inverse calls. We instantiate APE with the permutations of three recent lightweight hash function designs: Quark, Photon, and Spongent. For any of these permutations, an implementation that sup- ports both encryption and decryption requires less than 1.9 kGE and 2.8 kGE for 80-bit and 128-bit security levels, respectively
    corecore