96 research outputs found

    Trainability of cold induced vasodilatation in fingers and toes

    Get PDF
    Subjects that repeatedly have to expose the extremities to cold may benefit from a high peripheral temperature to maintain dexterity and tissue integrity. Therefore, we investigated if repeated immersions of a hand and a foot in cold water resulted in increased skin temperatures. Nine male and seven female subjects (mean 20.4; SD 2.2 years) immersed their right (trained) hand and foot simultaneously in 8°C water, 30 min daily for 15 days. During the pre and post-test (days 1 and 15, respectively) the left (untrained) hand and foot were immersed as well. Pain, tactile sensitivity and skin temperatures were measured every day. Mean (SD) toe temperature of the trained foot increased from 9.49°C (0.89) to 10.03°C (1.38) (p < 0.05). The trained hand, however, showed a drop in mean finger temperature from 9.28°C (0.54) to 8.91°C (0.44) (p < 0.001) and the number of cold induced vasodilation (CIVD) reactions decreased from 52% during the first test to 24% during the last test. No significant differences occurred in the untrained extremities. Pain diminished over time and tactile sensitivity decreased with skin temperature. The combination of less CIVD responses in the fingers after training, reduced finger skin temperatures in subjects that did show CIVD and the reduced pain and tactile sensitivity over time may lead to an increased risk for finger cold injuries. It is concluded that repeated cold exposure of the fingers does not lead to favorable adaptations, but may instead increase the injury risk

    Neuromusculoskeletal disorders in the neck and upper extremities among drivers of all-terrain vehicles – a case series

    Get PDF
    BACKGROUND: The purpose of this study was to investigate whether professional drivers of all-terrain vehicles (ATVs) with neck pain have a different array of neuromusculoskeletal disorders in the neck and upper extremities than a referent group with neck pain from the general population. It is hypothesized that exposure to shock-type vibration and unfavorable working postures in ATVs have the capacity to cause peripheral nervous lesions. METHODS: This study was based on a case series analyzed according to a case-case comparison design. The study population consisted of 60 male subjects, including professional drivers of forest machines (n = 15), snowmobiles (n = 15), snowgroomers (n = 15) and referents from the general population (n = 15) all of whom had reported neck pain in a questionnaire and underwent an extensive physical examination of the neck and upper extremities. Based on symptom history, symptoms and signs, and in some cases chemical, electroneurographical and radiological findings, subjects were classified as having a nociceptive or neuropathic disorder or a mix of these types. RESULTS: The occurrence of asymmetrical and focal neuropathies (peripheral nervous lesion), pure or in a mix with a nociceptive disorder was common among cases in the ATV driver groups (47%–79%). This contrasted with the referents that were less often classified as having asymmetrical and focal neuropathy (27%), but instead had more nociceptive disorders. The difference was most pronounced among drivers of snowgroomers, while drivers of forest machines were more frequently classified as having a nociceptive disorder originating in the muscles. CONCLUSION: This study found a high prevalence of assymetrical and focal neuropathies among drivers with pain in the neck, operating various ATVs. It seems as if exposure to shock-type whole-body vibration (WBV) and appurtenant unfavorable postures in ATVs may be associated to peripheral nervous lesions

    Threshold for detection of diabetic peripheral sensory neuropathy using a range of research grade monofilaments in persons with Type 2 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Aims</p> <p>To identify the threshold of reduced sensory perception in Type 2 diabetes mellitus (Type 2 DM) using a range of research grade monofilaments.</p> <p>Methods</p> <p>Three groups of participants were recruited into a between subject, cross-sectional study. Group 1(NEW), persons with Type 2 DM diagnosed for less than 2 years (<it>n </it>= 80); Group 2 (EST) persons with Type 2 DM diagnosed for more than 2 years (<it>n </it>= 91), and Group 3, a Comparison group without Type 2 DM (<it>n </it>= 73), resulted in a total study population, <it>n </it>= 244. Research grade monofilaments (2, 4, 6, 8 and 10-gram) were employed using standardised protocol, at 6 sites on the plantar aspect of both feet. The demographic and anthropometric measures of gender, age, height, weight, body mass index (BMI), blood pressure and duration of Type 2 DM since diagnosis (if applicable) of the participants were analysed.</p> <p>Results</p> <p>Perception of the research grade monofilaments differed significantly between the 3 groups (p < 0.05). The 6-gram monofilament was found to be the threshold of normal perception, based on 90% of the Comparison group perceiving the 6-gram monofilament at all sites in contrast to 64% of NEW and 48% of EST groups.</p> <p>Conclusion</p> <p>The 6-gram monofilament was identified as the threshold of normal sensory perception. Inability to perceive the 6-gram monofilament indicates, when using the method described in this study, that diminution of sensory perception is evident. Employing a range of monofilaments, 6, 8 and 10-grams in Type 2 DM foot screening would allow the clinical detection of deteriorating sensory perception and enable implementation of foot protection strategies at an earlier stage than is currently practised.</p

    Use of an innovative model to evaluate mobility in seniors with lower-limb amputations of vascular origin: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mobility of older individuals has often been only partially assessed, without considering all important aspects such as potential (available) versus effective (used) mobilities and the physical and psychosocial factors that modulate them. This study proposes a new model for evaluating mobility that considers all important aspects, applied here to lower-limb amputees with vascular origin. This model integrates the concepts of potential mobility (e.g. balance, speed of movement), effective mobility (e.g. life habits, movements in living areas) and factors that modulate these two types of mobility (e.g. strength, sensitivity, social support, depression). The main objective was to characterize potential and effective mobility as well as mobility modulators in a small sample of people with lower-limb amputations of vascular origin with different characteristics. The second objective of this pilot study was to assess the feasibility of measuring all variables in the model in a residential context.</p> <p>Methods</p> <p>An observational and transversal design was used with a heterogeneous sample of 10 participants with a lower-limb amputation of vascular origin, aged 51 to 83, assessed between eight and 18 months after discharge from an acute care hospital. A questionnaire of participant characteristics and 16 reliable and valid measurements were used.</p> <p>Results</p> <p>The results show that the potential mobility indicators do not accurately predict effective mobility, i.e., participants who perform well on traditional measures done in the laboratory or clinic are not always those who perform well in the real world. The model generated 4 different profiles (categories) of participants ranging from reduced to excellent potential mobility and low to excellent effective mobility, and characterized the modulating factors. The evaluations were acceptable in terms of the time taken (three hours) and the overall measurements, with a few exceptions, which were modified to optimize the data collected and the classification of the participants. For the population assessed, the results showed that some of the negative modulators (particularly living alone, no rehabilitation, pain, limited social support, poor muscle strength) played an important role in reducing effective mobility.</p> <p>Conclusion</p> <p>The first use of the model revealed interesting data that add to our understanding of important aspects linked to potential and effective mobility as well as modulators. The feasibility of measuring all variables in the model in a residential context was demonstrated. A study with a large number of participants is now warranted to rigorously characterize mobility levels of lower-limb amputees with vascular origin.</p
    corecore