1,120 research outputs found

    Improving zero-error classical communication with entanglement

    Full text link
    Given one or more uses of a classical channel, only a certain number of messages can be transmitted with zero probability of error. The study of this number and its asymptotic behaviour constitutes the field of classical zero-error information theory, the quantum generalisation of which has started to develop recently. We show that, given a single use of certain classical channels, entangled states of a system shared by the sender and receiver can be used to increase the number of (classical) messages which can be sent with no chance of error. In particular, we show how to construct such a channel based on any proof of the Bell-Kochen-Specker theorem. This is a new example of the use of quantum effects to improve the performance of a classical task. We investigate the connection between this phenomenon and that of ``pseudo-telepathy'' games. The use of generalised non-signalling correlations to assist in this task is also considered. In this case, a particularly elegant theory results and, remarkably, it is sometimes possible to transmit information with zero-error using a channel with no unassisted zero-error capacity.Comment: 6 pages, 2 figures. Version 2 is the same as the journal version plus figure 1 and the non-signalling box exampl

    Information-theoretic temporal Bell inequality and quantum computation

    Full text link
    An information-theoretic temporal Bell inequality is formulated to contrast classical and quantum computations. Any classical algorithm satisfies the inequality, while quantum ones can violate it. Therefore, the violation of the inequality is an immediate consequence of the quantumness in the computation. Furthermore, this approach suggests a notion of temporal nonlocality in quantum computation.Comment: v2: 5 pages, refereces added, discussion slightly revised, main result unchanged. v3: typos correcte

    The thermodynamics of prediction

    Full text link
    A system responding to a stochastic driving signal can be interpreted as computing, by means of its dynamics, an implicit model of the environmental variables. The system's state retains information about past environmental fluctuations, and a fraction of this information is predictive of future ones. The remaining nonpredictive information reflects model complexity that does not improve predictive power, and thus represents the ineffectiveness of the model. We expose the fundamental equivalence between this model inefficiency and thermodynamic inefficiency, measured by dissipation. Our results hold arbitrarily far from thermodynamic equilibrium and are applicable to a wide range of systems, including biomolecular machines. They highlight a profound connection between the effective use of information and efficient thermodynamic operation: any system constructed to keep memory about its environment and to operate with maximal energetic efficiency has to be predictive.Comment: 5 pages, 1 figur

    Non-local correlations as an information theoretic resource

    Full text link
    It is well known that measurements performed on spatially separated entangled quantum systems can give rise to correlations that are non-local, in the sense that a Bell inequality is violated. They cannot, however, be used for super-luminal signalling. It is also known that it is possible to write down sets of ``super-quantum'' correlations that are more non-local than is allowed by quantum mechanics, yet are still non-signalling. Viewed as an information theoretic resource, super-quantum correlations are very powerful at reducing the amount of communication needed for distributed computational tasks. An intriguing question is why quantum mechanics does not allow these more powerful correlations. We aim to shed light on the range of quantum possibilities by placing them within a wider context. With this in mind, we investigate the set of correlations that are constrained only by the no-signalling principle. These correlations form a polytope, which contains the quantum correlations as a (proper) subset. We determine the vertices of the no-signalling polytope in the case that two observers each choose from two possible measurements with d outcomes. We then consider how interconversions between different sorts of correlations may be achieved. Finally, we consider some multipartite examples.Comment: Revtex. 12 pages, 6 figure

    Quantum conditional operator and a criterion for separability

    Get PDF
    We analyze the properties of the conditional amplitude operator, the quantum analog of the conditional probability which has been introduced in [quant-ph/9512022]. The spectrum of the conditional operator characterizing a quantum bipartite system is invariant under local unitary transformations and reflects its inseparability. More specifically, it is shown that the conditional amplitude operator of a separable state cannot have an eigenvalue exceeding 1, which results in a necessary condition for separability. This leads us to consider a related separability criterion based on the positive map Γ:ρ(Trρ)ρ\Gamma:\rho \to (Tr \rho) - \rho, where ρ\rho is an Hermitian operator. Any separable state is mapped by the tensor product of this map and the identity into a non-negative operator, which provides a simple necessary condition for separability. In the special case where one subsystem is a quantum bit, Γ\Gamma reduces to time-reversal, so that this separability condition is equivalent to partial transposition. It is therefore also sufficient for 2×22\times 2 and 2×32\times 3 systems. Finally, a simple connection between this map and complex conjugation in the "magic" basis is displayed.Comment: 19 pages, RevTe

    Madelung Fluid Model for The Most Likely Wave Function of a Single Free Particle in Two Dimensional Space with a Given Average Energy

    Full text link
    We consider spatially two dimensional Madelung fluid whose irrotational motion reduces into the Schr\"odinger equation for a single free particle. In this respect, we regard the former as a direct generalization of the latter, allowing a rotational quantum flow. We then ask for the most likely wave function possessing a given average energy by maximizing the Shannon information entropy over the quantum probability density. We show that there exists a class of solutions in which the wave function is self-trapped, rotationally symmetric, spatially localized with finite support, and spinning around its center, yet stationary. The stationarity comes from the balance between the attractive quantum force field of a trapping quantum potential generated by quantum probability density and the repulsive centrifugal force of a rotating velocity vector field. We further show that there is a limiting case where the wave function is non-spinning and yet still stationary. This special state turns out to be the lowest stationary state of the ordinary Schr\"odinger equation for a particle in a cylindrical tube classical potential.Comment: 19 page

    The Bell Theorem as a Special Case of a Theorem of Bass

    Full text link
    The theorem of Bell states that certain results of quantum mechanics violate inequalities that are valid for objective local random variables. We show that the inequalities of Bell are special cases of theorems found ten years earlier by Bass and stated in full generality by Vorob'ev. This fact implies precise necessary and sufficient mathematical conditions for the validity of the Bell inequalities. We show that these precise conditions differ significantly from the definition of objective local variable spaces and as an application that the Bell inequalities may be violated even for objective local random variables.Comment: 15 pages, 2 figure

    Entropy Encoding, Hilbert Space and Karhunen-Loeve Transforms

    Full text link
    By introducing Hilbert space and operators, we show how probabilities, approximations and entropy encoding from signal and image processing allow precise formulas and quantitative estimates. Our main results yield orthogonal bases which optimize distinct measures of data encoding.Comment: 25 pages, 1 figur

    Chemical Toxicants in Water: A \u3ci\u3eGeoHealth\u3c/i\u3e Perspective in the Context of Climate Change

    Get PDF
    The editorial focuses on four major themes contextualized in a virtual GeoHealth workshop that occurred from June 14 to 16, 2021. Topics in that workshop included drinking water and chronic chemical exposure, environmental injustice, public health and drinking water policy, and the fate, transport, and human impact of aqueous contaminants in the context of climate change. The intent of the workshop was to further define the field of GeoHealth. This workshop emphasized on chemical toxicants that drive human health. The major calls for action emerged from the workshop include enhancing community engagement, advocating for equity and justice, and training the next generation

    Low-Level Groundwater Atrazine in High Atrazine Usage Nebraska Counties: Likely Effects of Excessive Groundwater Abstraction

    Get PDF
    Recent studies observed a correlation between estrogen-related cancers and groundwater atrazine in eastern Nebraska counties. However, the mechanisms of human exposure to atrazine are unclear because low groundwater atrazine concentration was observed in counties with high cancer incidence despite having the highest atrazine usage. We studied groundwater atrazine fate in high atrazine usage Nebraska counties. Data were collected from Quality Assessed Agrichemical Contaminant Nebraska Groundwater, Parameter–Elevation Regressions on Independent Slopes Model (PRISM), and water use databases. Descriptive statistics and cluster analysis were performed. Domestic wells (59%) were the predominant well type. Groundwater atrazine was affected by well depth. Clusters consisting of wells with low atrazine were characterized by excessive groundwater abstraction, reduced precipitation, high population, discharge areas, and metropolitan counties. Hence, low groundwater atrazine may be due to excessive groundwater abstraction accompanied by atrazine. Human exposure to atrazine in abstracted groundwater may be higher than the estimated amount in groundwater
    corecore