48,287 research outputs found
Criteria for generalized macroscopic and mesoscopic quantum coherence
We consider macroscopic, mesoscopic and "S-scopic" quantum superpositions of
eigenstates of an observable, and develop some signatures for their existence.
We define the extent, or size of a superposition, with respect to an
observable \hat{x}, as being the range of outcomes of \hat{x} predicted by that
superposition. Such superpositions are referred to as generalized -scopic
superpositions to distinguish them from the extreme superpositions that
superpose only the two states that have a difference in their prediction
for the observable. We also consider generalized -scopic superpositions of
coherent states. We explore the constraints that are placed on the statistics
if we suppose a system to be described by mixtures of superpositions that are
restricted in size. In this way we arrive at experimental criteria that are
sufficient to deduce the existence of a generalized -scopic superposition.
The signatures developed are useful where one is able to demonstrate a degree
of squeezing. We also discuss how the signatures enable a new type of
Einstein-Podolsky-Rosen gedanken experiment.Comment: 15 pages, accepted for publication in Phys. Rev.
Spectroscopic survey of M--type asteroids
M-type asteroids, as defined in the Tholen taxonomy (Tholen, 1984), are
medium albedo bodies supposed to have a metallic composition and to be the
progenitors both of differentiated iron-nickel meteorites and enstatite
chondrites. We carried out a spectroscopic survey in the visible and near
infrared wavelength range (0.4-2.5 micron) of 30 asteroids chosen from the
population of asteroids initially classified as Tholen M -types, aiming to
investigate their surface composition. The data were obtained during several
observing runs during the years 2004-2007 at the TNG, NTT, and IRTF telescopes.
We computed the spectral slopes in several wavelength ranges for each observed
asteroid, and we searched for diagnostic spectral features. We confirm a large
variety of spectral behaviors for these objects as their spectra are extended
into the near-infrared, including the identification of weak absorption bands,
mainly of the 0.9 micron band tentatively attributed to orthopyroxene, and of
the 0.43 micron band that may be associated to chlorites and Mg-rich
serpentines or pyroxene minerals such us pigeonite or augite. A comparison with
previously published data indicates that the surfaces of several asteroids
belonging to the M-class may vary significantly. We attempt to constrain the
asteroid surface compositions of our sample by looking for meteorite spectral
analogues in the RELAB database and by modelling with geographical mixtures of
selected meteorites/minerals. We confirm that iron meteorites, pallasites, and
enstatite chondrites are the best matches to most objects in our sample, as
suggested for M-type asteroids. The presence of subtle absorption features on
several asteroids confirms that not all objects defined by the Tholen M-class
have a pure metallic composition.Comment: 10 figures, 6 tables; Icarus, in pres
Light Element Abundance Inhomogeneities in Globular Clusters: Probing Star Formation and Evolution in the Early Milky Way
Abundance patterns of the elements C, N, and O are sensitive probes of
stellar nucleosynthesis processes and, in addition, O abundances are an
important input for stellar age determinations. Understanding the nature of the
observed distribution of these elements is key to constraining protogalactic
star formation history. Patterns deduced from low-resolution spectroscopy of
the CN, CH, NH, and CO molecules for low-mass stars in their core-hydrogen or
first shell-hydrogen burning phases in the oldest ensembles known, the Galactic
globular star clusters, are reviewed. New results for faint stars in NGC 104
(47 Tuc, C0021-723) reveal that the bimodal, anticorrelated pattern of CN and
CH strengths found among luminous evolved stars is also present in stars
nearing the end of their main-sequence lifetimes. In the absence of known
mechanisms to mix newly synthesized elements from the interior to the
observable surface layers of such unevolved stars, those particular
inhomogeneities imply that the original material from which the stars formed
some 15 billion years ago was chemically inhomogeneous in the C and N elements.
However, in other clusters, observations of abundance ratios and C isotope
ratios suggest that alterations to surface chemical compositions are produced
as stars evolve from the main sequence through the red giant branch. Thus, the
current observed distributions of C, N, and O among the brightest stars (those
also observed most often) may not reflect the true distribution from which the
protocluster cloud formed. The picture which is emerging of the C, N and O
abundance patterns within globular clusters may be one whichComment: 12 pages in uuencoded compressed postscript (including figures), to
appear in the Canadian Journal of Physics (Special Issue in Honor of G.
Herzberg
Randomised positive control trial of NSAID and antimicrobial treatment for calf fever caused by pneumonia
One hundred and fifty-four preweaning calves were followed between May and October 2015. Calves were fitted with continuous monitoring temperature probes (TempVerified FeverTag), programmed so a flashing light emitting diode (LED) light was triggered following six hours of a sustained ear canal temperature of ≥39.7°C. A total of 83 calves (61.9 per cent) developed undifferentiated fever, with a presumptive diagnosis of pneumonia through exclusion of other calf diseases. Once fever was detected, calves were randomly allocated to treatment groups. Calves in group 1 (NSAID) received 2 mg/kg flunixin meglumine (Allevinix, Merial) for three consecutive days and group 2 (antimicrobial) received 6 mg/kg gamithromycin (Zactran, Merial). If fever persisted for 72 hours after the initial treatment, calves were given further treatment (group 1 received antimicrobial and group 2 received NSAID). Calves in group 1 (NSAID) were five times more likely (P=0.002) to require a second treatment (the antimicrobial) after 72 hours to resolve the fever compared with the need to give group 2 (antimicrobial) calves a second treatment (NSAID). This demonstrates the importance of ongoing monitoring and follow-up of calves with respiratory disease. However, of calves with fever in group 1 (NSAID), 25.7 per cent showed resolution following NSAID-only treatment with no detrimental effect on the development of repeated fever or daily live weight gain. This suggests that NSAID alone may be a useful first-line treatment, provided adequate attention is given to ongoing monitoring to identify those cases that require additional antimicrobial treatment
Quantum Preferred Frame: Does It Really Exist?
The idea of the preferred frame as a remedy for difficulties of the
relativistic quantum mechanics in description of the non-local quantum
phenomena was undertaken by such physicists as J. S. Bell and D. Bohm. The
possibility of the existence of preferred frame was also seriously treated by
P. A. M. Dirac. In this paper, we propose an Einstein-Podolsky-Rosen-type
experiment for testing the possible existence of a quantum preferred frame. Our
analysis suggests that to verify whether a preferred frame of reference in the
quantum world exists it is enough to perform an EPR type experiment with pair
of observers staying in the same inertial frame and with use of the massive EPR
pair of spin one-half or spin one particles.Comment: 5 pp., 6 fig
Optical Observations of the Binary Millisecond Pulsars J2145-0750 and J0034-0534
We report on optical observations of the low-mass binary millisecond pulsar
systems J0034-0534 and J2145-0750. A faint (I=23.5) object was found to be
coincident with the timing position of PSR J2145-0750. While a galaxy or
distant main-sequence star cannot be ruled out, its magnitude is consistent
with an ancient white dwarf, as expected from evolutionary models. For PSR
J0034-0534 no objects were detected to a limiting magnitude of R=25.0,
suggesting that the white dwarf in this system is cold. Using white dwarf
cooling models, the limit on the magnitude of the PSR J0034-0534 companion
suggests that at birth the pulsar in this system may have rotated with a period
as short as 0.6 ms. These observations provide further evidence that the
magnetic fields of millisecond pulsars do not decay on time scales shorter than
1 Gyr.Comment: 6 pages, uuencoded, gz -9 compressed postscript, accepted by ApJ
- …