6,188 research outputs found

    J.S. Bell's Concept of Local Causality

    Full text link
    John Stewart Bell's famous 1964 theorem is widely regarded as one of the most important developments in the foundations of physics. It has even been described as "the most profound discovery of science." Yet even as we approach the 50th anniversary of Bell's discovery, its meaning and implications remain controversial. Many textbooks and commentators report that Bell's theorem refutes the possibility (suggested especially by Einstein, Podolsky, and Rosen in 1935) of supplementing ordinary quantum theory with additional ("hidden") variables that might restore determinism and/or some notion of an observer-independent reality. On this view, Bell's theorem supports the orthodox Copenhagen interpretation. Bell's own view of his theorem, however, was quite different. He instead took the theorem as establishing an "essential conflict" between the now well-tested empirical predictions of quantum theory and relativistic \emph{local causality}. The goal of the present paper is, in general, to make Bell's own views more widely known and, in particular, to explain in detail Bell's little-known mathematical formulation of the concept of relativistic local causality on which his theorem rests. We thus collect and organize many of Bell's crucial statements on these topics, which are scattered throughout his writings, into a self-contained, pedagogical discussion including elaborations of the concepts "beable", "completeness", and "causality" which figure in the formulation. We also show how local causality (as formulated by Bell) can be used to derive an empirically testable Bell-type inequality, and how it can be used to recapitulate the EPR argument.Comment: 19 pages, 4 figure

    A spectral deferred correction strategy for low Mach number reacting flows subject to electric fields

    Get PDF
    We propose an algorithm for low Mach number reacting flows subjected to electric field that includes the chemical production and transport of charged species. This work is an extension of a multi-implicit spectral deferred correction (MISDC) algorithm designed to advance the conservation equations in time at scales associated with advective transport. The fast and nontrivial interactions of electrons with the electric field are treated implicitly using a Jacobian-Free Newton Krylov approach for which a preconditioning strategy is developed. Within the MISDC framework, this enables a close and stable coupling of diffusion, reactions and dielectric relaxation terms with advective transport and is shown to exhibit second-order convergence in space and time. The algorithm is then applied to a series of steady and unsteady problems to demonstrate its capability and stability. Although developed in a one-dimensional case, the algorithmic ingredients are carefully designed to be amenable to multidimensional applications

    Upper Bound on the Dark Matter Total Annihilation Cross Section

    Get PDF
    We consider dark matter annihilation into Standard Model particles and show that the least detectable final states, namely neutrinos, define an upper bound on the total cross section. Calculating the cosmic diffuse neutrino signal, and comparing it to the measured terrestrial atmospheric neutrino background, we derive a strong and general bound. This can be evaded if the annihilation products are dominantly new and truly invisible particles. Our bound is much stronger than the unitarity bound at the most interesting masses, shows that dark matter halos cannot be significantly modified by annihilations, and can be improved by a factor of 10--100 with existing neutrino experiments.Comment: 4 pages, 3 figures; version accepted for publication in PR

    The EPR paradox, Bell's inequality, and the question of locality

    Full text link
    Most physicists agree that the Einstein-Podolsky-Rosen-Bell paradox exemplifies much of the strange behavior of quantum mechanics, but argument persists about what assumptions underlie the paradox. To clarify what the debate is about, we employ a simple and well-known thought experiment involving two correlated photons to help us focus on the logical assumptions needed to construct the EPR and Bell arguments. The view presented in this paper is that the minimal assumptions behind Bell's inequality are locality and counterfactual definiteness, but not scientific realism, determinism, or hidden variables, as is often suggested. We further examine the resulting constraints on physical theory with an illustration from the many-worlds interpretation of quantum mechanics -- an interpretation that we argue is deterministic, local, and realist, but that nonetheless violates the Bell inequality.Comment: 28 pages; change of title, minor wording changes, move to TeX forma

    A Numerical Study of Methods for Moist Atmospheric Flows: Compressible Equations

    Full text link
    We investigate two common numerical techniques for integrating reversible moist processes in atmospheric flows in the context of solving the fully compressible Euler equations. The first is a one-step, coupled technique based on using appropriate invariant variables such that terms resulting from phase change are eliminated in the governing equations. In the second approach, which is a two-step scheme, separate transport equations for liquid water and vapor water are used, and no conversion between water vapor and liquid water is allowed in the first step, while in the second step a saturation adjustment procedure is performed that correctly allocates the water into its two phases based on the Clausius-Clapeyron formula. The numerical techniques we describe are first validated by comparing to a well-established benchmark problem. Particular attention is then paid to the effect of changing the time scale at which the moist variables are adjusted to the saturation requirements in two different variations of the two-step scheme. This study is motivated by the fact that when acoustic modes are integrated separately in time (neglecting phase change related phenomena), or when sound-proof equations are integrated, the time scale for imposing saturation adjustment is typically much larger than the numerical one related to the acoustics

    Trends and Regional Variation in Hip, Knee and Shoulder Replacement

    Get PDF
    Analyzes patterns in underuse or overuse of joint replacements among Medicare beneficiaries by geographic regions and race/ethnicity. Explores underlying factors and highlights the need for physician and patient education and shared decision making

    ILR Impact Brief - Knowledge, Skills, and Performance: Getting the Most From Team Training

    Get PDF
    Teams are an integral feature of the American workplace; indeed, more than 80% of the Fortune 500 companies make extensive use of work teams. Action teams, pulled together to carry out a particular time-limited function that requires the specialized expertise of its members, are becoming increasingly common. Researchers have noted that the success of these teams is often thwarted by their lack of information about teamwork in general and their insufficient mastery of basic team competencies. Most organizations train team members for the particular job at hand, so the question arises as to the utility of generic team training. In other words, would imparting knowledge and skills that could be applied in, and adapted to, any number of situations improve outcomes, and if so, what is the mechanism that facilitates this result

    The Impact of Task- and Team-Generic Teamwork Skills Training on Team Effectiveness

    Get PDF
    This study examined the effects of training team members in three task- and teamgeneric teamwork skills: planning and task coordination, collaborative problem solving, and communication. We first examined the degree to which task- and team-generic teamwork skills training impacted team performance on a task unrelated to the content of the training program.We then examined whether the effects of task- and team-generic teamwork skills training on team performance were due to the transfer of skills directly related to planning and task coordination, collaborative problem solving, and communication. Results from 65 four-person project teams indicated that task- and team-generic teamwork skills training led to significantly higher levels of team performance. Results also indicated that the effects of task- and teamgeneric teamwork skills training on team performance were mediated by planning and task coordination and collaborative problem solving behavior. Although communication was positively affected by the task- and team-generic teamwork skills training, it did not mediate the relationship between task- and team-generic teamwork skills training and team performance.Theoretical and practical implications of these results are discussed, as well as possible limitations and directions for future research

    Experimental violation of a spin-1 Bell inequality using maximally-entangled four-photon states

    Get PDF
    We demonstrate the first experimental violation of a spin-1 Bell inequality. The spin-1 inequality is a calculation based on the Clauser, Horne, Shimony and Holt formalism. For entangled spin-1 particles the maximum quantum mechanical prediction is 2.552 as opposed to a maximum of 2, predicted using local hidden variables. We obtained an experimental value of 2.27 ±0.02\pm 0.02 using the four-photon state generated by pulsed, type-II, stimulated parametric down-conversion. This is a violation of the spin-1 Bell inequality by more than 13 standard deviations.Comment: 5 pages, 3 figures, Revtex4. Problem with figures resolve
    • …
    corecore