11,872 research outputs found
Microbes in the Anthropocene: spillover of agriculturally selected bacteria and their impact on natural ecosystems
Soil microbial communities are enormously diverse, with at least millions of species and trillions of genes unknown to science or poorly described. Soil microbial communities are key components of agriculture, for example in provisioning nitrogen and protecting crops from pathogens, providing overall ecosystem services in excess of $1000bn per year. It is important to know how humans are affecting this hidden diversity. Much is known about the negative consequences of agricultural intensification on higher-organisms, but almost nothing is known about how alterations to landscapes affect microbial diversity, distributions and processes. We review what is known about spatial flows of microbes and their response to land use change, and outline nine hypotheses to adva nce research of microbiomes across landscapes. We hypothesise that intensified agriculture selects for certain taxa and genes, which then “spill over” into adjacent unmodified areas and generate a halo of genetic differentiation around agricultural fields. Consequently, the spatial configuration and management intensity of different habitats combines with the dispersal ability of individual taxa to determine the extent of spillover, which can impact the functioning of adjacent unmodified habitats. When land scapes are heterogeneous and dispersal rates are high, this will select for large genomes that allow exploitation of multiple habitats , a process that may be accelerated through horizontal gene transfer. Continued expansion of agriculture will increase genotypic similarity, making microbial community functioning increasingly variable in human - dominated landscapes , potentially also impacting the consistent provisioning of ecosystem services . While the resulting economic costs have not been calculated, it is clear that dispersal dynamics of microbes should be taken into consideration to ensure that ecosystem functioning and services are maintained in agri - ecosystem mosaics
Evidence for heat losses via party wall cavities in masonry construction
This paper presents empirical evidence and analysis that supports the existence of a significant heat loss mechanism resulting from air movement through cavities in party walls in masonry construction. A range of heat loss experiments were undertaken as part of the Stamford Brook housing field trial in Altrincham in the United Kingdom. Co-heating tests showed a large discrepancy between the predicted and measured whole house heat loss coefficients. Analysis of the co-heating results, along with internal temperature data, thermal imaging and a theoretical analysis indicated that the most likely explanation for the discrepancy was bypassing of the thermal insulation via the uninsulated party wall cavities. The data show that such a bypass mechanism is potentially the largest single contributor to heat loss in terraced dwellings built to the 2006 revision of the Building Regulations. A comparable convective heat bypass associated with masonry party walls was identified in the late 1970s during the course of the Twin Rivers Project in the United States, albeit in a somewhat different construction from that used at Stamford Brook. A similar effect was also reported in the United Kingdom in the mid 1990s. However, it appears that no action was taken at that time either to confirm the results, to develop any technical solutions, or to amend standards for calculating heat losses from buildings. Current conventions for heat loss calculations in the United Kingdom do not take account of heat losses associated with party walls and it is suggested by the authors that such conventions may need to be updated to take account of the effect described in this paper. In the final part of the paper, the authors propose straightforward solutions to prevent bypassing of roof insulation via party walls by for example filling the cavity of the party wall with mineral fibre insulation, or by inserting a cavity closer across the cavity in the plane of the roof insulation.Practical application: The heat bypass mechanism described in this paper is believed by the authors to contribute to a significant proportion of heat loss from buildings in the UK constructed with clear cavities such as those found in separating walls between cavity masonry dwellings. It is proposed that relatively simple design changes could be undertaken to eliminate such heat loss pathways from new buildings. In addition, simple and cost effective measures are envisaged that could be used to minimise or eliminate the bypass from existing buildings. Such an approach could give rise to a significant reduction in carbon emissions from UK housing
Confluent Orthogonal Drawings of Syntax Diagrams
We provide a pipeline for generating syntax diagrams (also called railroad
diagrams) from context free grammars. Syntax diagrams are a graphical
representation of a context free language, which we formalize abstractly as a
set of mutually recursive nondeterministic finite automata and draw by
combining elements from the confluent drawing, layered drawing, and smooth
orthogonal drawing styles. Within our pipeline we introduce several heuristics
that modify the grammar but preserve the language, improving the aesthetics of
the final drawing.Comment: GD 201
N-player quantum games in an EPR setting
The -player quantum game is analyzed in the context of an
Einstein-Podolsky-Rosen (EPR) experiment. In this setting, a player's
strategies are not unitary transformations as in alternate quantum
game-theoretic frameworks, but a classical choice between two directions along
which spin or polarization measurements are made. The players' strategies thus
remain identical to their strategies in the mixed-strategy version of the
classical game. In the EPR setting the quantum game reduces itself to the
corresponding classical game when the shared quantum state reaches zero
entanglement. We find the relations for the probability distribution for
-qubit GHZ and W-type states, subject to general measurement directions,
from which the expressions for the mixed Nash equilibrium and the payoffs are
determined. Players' payoffs are then defined with linear functions so that
common two-player games can be easily extended to the -player case and
permit analytic expressions for the Nash equilibrium. As a specific example, we
solve the Prisoners' Dilemma game for general . We find a new
property for the game that for an even number of players the payoffs at the
Nash equilibrium are equal, whereas for an odd number of players the
cooperating players receive higher payoffs.Comment: 26 pages, 2 figure
Perfect Fluid Quantum Anisotropic Universe: Merits and Challenges
The present paper deals with quantization of perfect fluid anisotropic
cosmological models. Bianchi type V and IX models are discussed following
Schutz's method of expressing fluid velocities in terms of six potentials. The
wave functions are found for several examples of equations of state. In one
case a complete wave packet could be formed analytically. The initial
singularity of a zero proper volume can be avoided in this case, but it is
plagued by the usual problem of non-unitarity of anisotropic quantum
cosmological models. It is seen that a particular operator ordering alleviates
this problem.Comment: 13 pages, 4 figures; Accepted for publication in Gen Relativ Gravi
Nudges and other moral technologies in the context of power: Assigning and accepting responsibility
Strawson argues that we should understand moral responsibility in terms of our practices of holding responsible and taking responsibility. The former covers what is commonly referred to as backward-looking responsibility , while the latter covers what is commonly referred to as forward-looking responsibility . We consider new technologies and interventions that facilitate assignment of responsibility. Assigning responsibility is best understood as the second- or third-personal analogue of taking responsibility. It establishes forward-looking responsibility. But unlike taking responsibility, it establishes forward-looking responsibility in someone else. When such assignments are accepted, they function in such a way that those to whom responsibility has been assigned face the same obligations and are susceptible to the same reactive attitudes as someone who takes responsibility. One family of interventions interests us in particular: nudges. We contend that many instances of nudging tacitly assign responsibility to nudgees for actions, values, and relationships that they might not otherwise have taken responsibility for. To the extent that nudgees tacitly accept such assignments, they become responsible for upholding norms that would otherwise have fallen under the purview of other actors. While this may be empowering in some cases, it can also function in such a way that it burdens people with more responsibility that they can (reasonably be expected to) manage
Pre-main-sequence isochrones - III: The Cluster Collaboration isochrone server
We present an isochrone server for semi-empirical pre-main-sequence model isochrones in the following systems: Johnson–Cousins, Sloan Digital Sky Survey, Two-Micron All-Sky Survey, Isaac Newton Telescope (INT) Wide-Field Camera and INT Photometric Hα Survey (IPHAS)/UV-Excess Survey (UVEX). The server can be accessed via the Cluster Collaboration webpage http://www.astro.ex.ac.uk/people/timn/isochrones/. To achieve this, we have used the observed colours of member stars in young clusters with well-established age, distance and reddening to create fiducial loci in the colour–magnitude diagram. These empirical sequences have been used to quantify the discrepancy between the models and data arising from uncertainties in both the interior and atmospheric models, resulting in tables of semi-empirical bolometric corrections (BCs) in the various photometric systems. The model isochrones made available through the server are based on existing stellar interior models coupled with our newly derived semi-empirical BCs. As part of this analysis, we also present new cluster parameters for both the Pleiades and Praesepe, yielding ages of 135+20−11 and 665+14−7Myr as well as distances of 132 ± 2 and 184 ± 2 pc, respectively (statistical uncertainty only)
Pre-main-sequence isochrones - III. The cluster collaboration isochrone server
We present an isochrone server for semi-empirical pre-main-sequence model isochrones in the following systems: Johnson-Cousins, Sloan Digital Sky Survey, Two-Micron All-Sky Survey, Isaac Newton Telescope (INT) Wide-Field Camera and INT Photometric Ha Survey (IPHAS)/UV-Excess Survey (UVEX). The server can be accessed via the Cluster Collaboration webpage http://www.astro.ex.ac.uk/people/timn/isochrones/. To achieve this, we have used the observed colours ofmember stars in young clusters with well-established age, distance and reddening to create fiducial loci in the colour-magnitude diagram. These empirical sequences have been used to quantify the discrepancy between the models and data arising from uncertainties in both the interior and atmospheric models, resulting in tables of semi-empirical bolometric corrections (BCs) in the various photometric systems. The model isochrones made available through the server are based on existing stellar interior models coupled with our newly derived semi-empirical BCs. As part of this analysis, we also present new cluster parameters for both the Pleiades and Praesepe, yielding ages of 135+20 -11 and 665+14 -7 Myr as well as distances of 132 ± 2 and 184 ± 2 pc, respectively (statistical uncertainty only).JMR is funded by a UK Science and Technology Facilities Council
(STFC) studentship. EEM acknowledges support from the National
Science Foundation (NSF) Award AST-1008908. The authors
would like to thank Emanuele Tognelli for the updated set of Pisa
models and John Stauffer for sharing his catalogue of Kron photometric
measurements of Pleiades members. The authors would also
like to thank the referee for comments which have vastly improved
the clarity of the manuscript.
This research has made use of data obtained at the Isaac Newton
Telescope, which is operated on the island of La Palma by the Isaac
Newton Group (ING) in the Spanish Observatorio del Roque de
los Muchachos of the Institutio de Astrofisica de Canarias. This research
has made use of archival data products from the Two-Micron
All-Sky Survey (2MASS), which is a joint project of the University
of Massachusetts and the Infrared Processing and Analysis Center,
funded by the National Aeronautics and Space Administration
(NASA) and the National Science Foundation.
This research has made use of public data from the SDSS. Funding
for the SDSS was provided by the Alfred P. Sloan Foundation,
the Participating Institutions, the National Science Foundation, the
US Department of Energy, the National Aeronautics and Space Administration,
the Japanese Monbukagakusho, the Max Planck Society
and the Higher Education Funding Council for England. The
SDSS was managed by the Astrophysical Research Consortium for
the Participating Institutions
Non-thermal emission processes in massive binaries
In this paper, I present a general discussion of several astrophysical
processes likely to play a role in the production of non-thermal emission in
massive stars, with emphasis on massive binaries. Even though the discussion
will start in the radio domain where the non-thermal emission was first
detected, the census of physical processes involved in the non-thermal emission
from massive stars shows that many spectral domains are concerned, from the
radio to the very high energies.
First, the theoretical aspects of the non-thermal emission from early-type
stars will be addressed. The main topics that will be discussed are
respectively the physics of individual stellar winds and their interaction in
binary systems, the acceleration of relativistic electrons, the magnetic field
of massive stars, and finally the non-thermal emission processes relevant to
the case of massive stars. Second, this general qualitative discussion will be
followed by a more quantitative one, devoted to the most probable scenario
where non-thermal radio emitters are massive binaries. I will show how several
stellar, wind and orbital parameters can be combined in order to make some
semi-quantitative predictions on the high-energy counterpart to the non-thermal
emission detected in the radio domain.
These theoretical considerations will be followed by a census of results
obtained so far, and related to this topic... (see paper for full abstract)Comment: 47 pages, 5 postscript figures, accepted for publication in Astronomy
and Astrophysics Review. Astronomy and Astrophysics Review, in pres
- …
