6,147 research outputs found

    Chemical Abundance Study of One Red Giant Star in NGC 5694 : A Globular Cluster with Dwarf Spheroidals' Chemical Signature?

    Get PDF
    We report the abundance analysis of one red giant branch star in the metal-poor outer halo globular cluster NGC 5694. We obtain [Fe/H] = -1.93, based on the ionized lines, and our metallicity measurement is in good agreement with previous estimates. We find that [Ca+Ti/2Fe] and [Cu/Fe] of NGC 5694 are about 0.3 -- 0.4 dex lower than other globular clusters with similar metallicities, but similar to some LMC clusters and stars in some dwarf spheroidal galaxies. Differences persist, however, in the abundances of neutron capture elements. The unique chemical abundance pattern and the large Galactocentric distance (30 kpc) and radial velocity (-138.6 +/- 1.0 km/sec) indicate that NGC 5694 had an extragalactic origin.Comment: ApJL accepte

    Angular momentum dependent friction slows down rotational relaxation under non-equilibrium conditions

    Full text link
    It has recently been shown that relaxation of the rotational energy of hot non-equlibrium photofragments (i) slows down significantly with the increase of their initial rotational temperature and (ii) differs dramatically from the relaxation of the equilibrium rotational energy correlation function, manifesting thereby breakdown of the linear response description [Science 311, 1907 (2006)]. We demonstrate that this phenomenon may be caused by the angular momentum dependence of rotational friction. We have developed the generalized Fokker-Planck equation whose rotational friction depends upon angular momentum algebraically. The calculated rotational correlation functions correspond well to their counterparts obtained via molecular dynamics simulations in a broad range of initial non-equilibrium conditions. It is suggested that the angular momentum dependence of friction should be taken into account while describing rotational relaxation far from equilibrium

    IRAC Observations of Taurus Pre-Main Sequence Stars

    Full text link
    We present infrared photometry obtained with the IRAC camera on the Spitzer Space Telescope of a sample of 82 pre-main sequence stars and brown dwarfs in the Taurus star-forming region. We find a clear separation in some IRAC color-color diagrams between objects with and without disks. A few ``transition'' objects are noted, which correspond to systems in which the inner disk has been evacuated of small dust. Separating pure disk systems from objects with remnant protostellar envelopes is more difficult at IRAC wavelengths, especially for objects with infall at low rates and large angular momenta. Our results generally confirm the IRAC color classification scheme used in previous papers by Allen et al. and Megeath et al. to distinguish between protostars, T Tauri stars with disks, and young stars without (inner) disks. The observed IRAC colors are in good agreement with recent improved disk models, and in general accord with models for protostellar envelopes derived from analyzing a larger wavelength region. We also comment on a few Taurus objects of special interest. Our results should be useful for interpreting IRAC results in other, less well-studied star-forming regions.Comment: 29 pages 10 figures, to appear in Ap

    Dynamical Evolution of Elliptical Galaxies with Central Singularities

    Full text link
    We study the effect of a massive central singularity on the structure of a triaxial galaxy using N-body simulations. Starting from a single initial model, we grow black holes with various final masses Mh and at various rates, ranging from impulsive to adiabatic. In all cases, the galaxy achieves a final shape that is nearly spherical at the center and close to axisymmetric throughout. However, the rate of change of the galaxy's shape depends strongly on the ratio Mh/Mg of black hole mass to galaxy mass. When Mh/Mg < 0.3%, the galaxy evolves in shape on a timescale that exceeds 100 orbital periods, or roughly a galaxy lifetime. When Mh/Mg > 2%, the galaxy becomes axisymmetric in little more than a crossing time. We propose that the rapid evolution toward axisymmetric shapes that occurs when Mh/Mg > 2% provides a negative feedback mechanism which limits the mass of central black holes by cutting off their supply of fuel.Comment: 27 Latex pages, 9 Postscript figures, uses aastex.sty. Accepted for Publication in The Astrophysical Journal, Nov. 26, 199

    Evidence of a Curved Synchrotron Spectrum in the Supernova Remnant SN 1006

    Full text link
    A joint spectral analysis of some Chandra ACIS X-ray data and Molonglo Observatory Synthesis Telescope radio data was performed for 13 small regions along the bright northeastern rim of the supernova remnant SN 1006. These data were fitted with a synchrotron radiation model. The nonthermal electron spectrum used to compute the photon emission spectra is the traditional exponentially cut off power law, with one notable difference: The power-law index is not a constant. It is a linear function of the logarithm of the momentum. This functional form enables us to show, for the first time, that the synchrotron spectrum of SN 1006 seems to flatten with increasing energy. The effective power-law index of the electron spectrum is 2.2 at 1 GeV (i.e., radio synchrotron-emitting momenta) and 2.0 at about 10 TeV (i.e., X-ray synchrotron-emitting momenta). This amount of change in the index is qualitatively consistent with theoretical models of the amount of curvature in the proton spectrum of the remnant. The evidence of spectral curvature implies that cosmic rays are dynamically important instead of being "test" particles. The spectral analysis also provides a means of determining the critical frequency of the synchrotron spectrum associated with the highest-energy electrons. The critical frequency seems to vary along the northeastern rim, with a maximum value of 1.1e17 (0.6e17 - 2.1e17) Hz. This value implies that the electron diffusion coefficient can be no larger than a factor of ~4.5-21 times the Bohm diffusion coefficient if the velocity of the forward shock is in the range 2300-5000 km/s. Since the coefficient is close to the Bohm limit, electrons are accelerated nearly as fast as possible in the regions where the critical frequency is about 1.0e17 Hz.Comment: 41 pages, 8 figures, accepted by Ap

    The 2-10 keV XRB dipole and its cosmological implications

    Full text link
    The hard X-ray (>2 keV) emission of the local and distant Universe as observed with the HEAO1-A2 experiment is reconsidered in the context of large scale cosmic structure. Using all-sky X-ray samples of AGN and galaxy clusters we remove the dominant local X-ray flux from within a redshift of ~ 0.02. We evaluate the dipolar and higher order harmonic structure in 4 X-ray colours. The estimated dipole anisotropy of the unresolved flux appears to be consistent with a combination of the Compton-Getting effect due to the Local Group motion (dipole amplitude Delta = 0.0042) and remaining large scale structure (0.0023 <~ Delta <~ 0.0085), in good agreement with the expectations of Cold Dark Matter models. The observed anisotropy does however also suggest a non-negligible Galactic contribution which is more complex than current, simple models of >2 keV Galactic X-ray emission. Comparison of the soft and hard colour maps with a harmonic analysis of the 1.5 keV ROSAT all-sky data qualitatively suggests that at least a third of the faint, unresolved ~ 18 deg scale structure in the HEAO1-A2 data may be Galactic in origin. However, the effect on measured flux dipoles is small (<~3%). We derive an expression for dipole anisotropy and acceleration and demonstrate how the dipole anisotropy of the distant X-ray frame can constrain the amplitude of bulk motions of the universe. From observed bulk motions over a local ~ 50 Mpc/h radius volume we determine 0.14 <~ Omega^0.6/b_x(0) <~ 0.59.Comment: 39 pages, Revised version accepted ApJ Main Journal, 3 new Figures + additional tex

    Models for Nonthermal Photon Spectra

    Full text link
    We describe models of nonthermal photon emission from a homogeneous distribution of relativistic electrons and protons. Contributions from the synchrotron, inverse Compton, nonthermal bremsstrahlung and neutral-pion decay processes are computed separately using a common parameterization of the underlying distribution of nonthermal particles. The models are intended for use in fitting spectra from multi-wavelength observations and are designed to be accurate and efficient. Although our applications have focused on Galactic supernova remnants, the software is modular, making it straightforward to customize for different applications. In particular, the shapes of the particle distribution functions and the shape of the seed photon spectrum used by the inverse Compton model are defined in separate modules and may be customized for specific applications. We assess the accuracy of these models by using a recurrence relation and by comparing them with analytic results and with previous numerical work by other authors.Comment: 14 pages, 7 figures, Accepted for publication in ApJ Supplemen

    The Production of Sodium and Aluminum in Globular Cluster Red Giant Stars

    Full text link
    We study the production of Na and Al around the hydrogen shell of two red-giant sequences of different metallicity in order to explain the abundance variations seen in globular cluster stars in a mixing scenario. Using detailed stellar models together with an extensive nuclear reaction network, we have calculated the distribution of the various isotopic abundances around the hydrogen shell at numerous points along the red-giant branch. These calculations allow for the variation in both temperature and density in the shell region as well as the timescale of the nuclear processing, as governed by the outward movement of the hydrogen shell. The reaction network uses updated rates over those of Caughlin \& Fowler (1988). We find evidence for the production of Na and Al occurring in the NeNa and MgAl cycles. In particular, Na is significantly enhanced throughout the region above the hydrogen shell. The use of the newer reaction rates causes a substantial increase in the production of 27^{27}Al above the hydrogen shell through heavy leakage from the NeNa cycle and should have an important effect on the predicted surface abundances. We also find that the nuclear processing is considerably more extensive at lower metallicities.Comment: 4 pages with 4 EPS figures embedded, accepted by ApJL March 28, 199

    Partial suppression of the radial orbit instability in stellar systems

    Full text link
    It is well known that the simple criterion proposed originally by Polyachenko and Shukhman (1981) for the onset of the radial orbit instability, although being generally a useful tool, faces significant exceptions both on the side of mildly anisotropic systems (with some that can be proved to be unstable) and on the side of strongly anisotropic models (with some that can be shown to be stable). In this paper we address two issues: Are there processes of collisionless collapse that can lead to equilibria of the exceptional type? What is the intrinsic structural property that is responsible for the sometimes noted exceptional stability behavior? To clarify these issues, we have performed a series of simulations of collisionless collapse that start from homogeneous, highly symmetrized, cold initial conditions and, because of such special conditions, are characterized by very little mixing. For these runs, the end-states can be associated with large values of the global pressure anisotropy parameter up to 2K_r/K_T \approx 2.75. The highly anisotropic equilibrium states thus constructed show no significant traces of radial anisotropy in their central region, with a very sharp transition to a radially anisotropic envelope occurring well inside the half-mass radius (around 0.2 r_M). To check whether the existence of such almost perfectly isotropic "nucleus" might be responsible for the apparent suppression of the radial orbit instability, we could not resort to equilibrium models with the above characteristics and with analytically available distribution function; instead, we studied and confirmed the stability of configurations with those characteristics by initializing N-body approximate equilibria (with given density and pressure anisotropy profiles) with the help of the Jeans equations.Comment: 26 pages, 9 figures, accepted for publication in The Astrophysical Journa
    • 

    corecore