146 research outputs found

    AXL Promotes Metformin-Induced Apoptosis Through Mediation of Autophagy by Activating ROS-AMPK-ULK1 Signaling in Human Esophageal Adenocarcinoma

    Get PDF
    AXL receptor tyrosine kinase promotes an invasive phenotype and chemotherapy resistance in esophageal adenocarcinoma (EAC). AXL has been implicated in the regulation of autophagy, but the underlying molecular mechanism remains poorly understood. Herein, we investigate the mechanistic role of AXL in autophagy as well as metformin-induced effects on the growth and survival of EAC. We demonstrate that AXL mediates autophagic flux through activation of AMPK-ULK1 signaling in a reactive oxygen species (ROS)-dependent mechanism by glucose starvation. AXL positively regulates basal cellular ROS levels without significantly affecting mitochondrial ROS production in EAC cells. Pharmacological inhibition of cellular ROS using Trolox abrogates glucose starvation-induced AMPK signaling and autophagy. We demonstrate that AXL expression is required for metformin-induced apoptosis in EAC cells in vitro. The apoptosis induction by metformin is markedly attenuated by inhibition of autophagy through genetic silencing of Beclin1 or ATG7 autophagy mediators, thereby confirming the requirement of intact autophagy for enhancing metformin-induced apoptosis in EAC cells. Our data indicate that metformin-induced autophagy displays a pro-apoptotic function in EAC cells. We show that the metformin-induced suppression of tumor growth in vivo is highly dependent on AXL expression in a tumor xenograft mouse model of EAC. We demonstrate that AXL promotes metformin-induced apoptosis through activation of autophagy in EAC. AXL may be a valuable biomarker to identify tumors that are sensitive to metformin. Therefore, AXL expression could inform the selection of patients for future clinical trials to evaluate the therapeutic efficacy of metformin in EAC

    t-DARPP regulates phosphatidylinositol-3-kinase-dependent cell growth in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent reports have shown that t-DARPP (truncated isoform of DARPP-32) can mediate trastuzumab resistance in breast cancer cell models. In this study, we evaluated expression of t-DARPP in human primary breast tumors, and investigated the role of t-DARPP in regulating growth and proliferation in breast cancer cells.</p> <p>Results</p> <p>Quantitative real time RT-PCR analysis using primers specific for t-DARPP demonstrated overexpression of t-DARPP in 36% of breast cancers (13/36) as opposed to absent to very low t-DARPP expression in normal breast tissue (p < 0.05). The mRNA overexpression of t-DARPP was overwhelmingly observed in ductal carcinomas, including invasive ductal carcinomas and intraductal carcinomas, rather than other types of breast cancers. The immunohistochemistry analysis of DARPP-32/t-DARPP protein(s) expression in breast cancer tissue microarray that contained 59 tumors and matched normal tissues when available indicated overexpression in 35.5% of primary breast tumors that were more frequent in invasive ductal carcinomas (43.7%; 21/48). In vitro studies showed that stable overexpression of t-DARPP in MCF-7 cells positively regulated proliferation and anchorage-dependent and -independent growth. Furthermore, this effect was concomitant with induction of phosphorylation of AKT<sup>ser473 </sup>and its downstream target phospho<sup>ser9 </sup>GSK3β, and increased Cyclin D1 and C-Myc protein levels. The knockdown of endogenous t-DARPP in HCC1569 cells led to a marked decrease in phosphorylation of AKTs<sup>ser473 </sup>and GSK3β<sup>ser9</sup>. The use of PI3K inhibitor LY294002 or Akt siRNA abrogated the t-DARPP-mediated phosphorylation of AKT<sup>ser473 </sup>and led to a significant reduction in cell growth.</p> <p>Conclusions</p> <p>Our findings underscore the potential role of t-DARPP in regulating cell growth and proliferation through PI3 kinase-dependent mechanism.</p

    Attenuation of Soft-Tissue Sarcomas Resistance to the Cytotoxic Action of TNF-α by Restoring p53 Function

    Get PDF
    BACKGROUND: Isolated limb perfusion with TNF-α and melphalan is used with remarkable efficiency to treat unresectable limb sarcomas. Here we tested the ability of TNF-α to directly induce apoptosis of sarcoma cells. In addition, we investigated the impact of p53 in the regulation of such effect. METHODOLOGY/PRINCIPAL FINDINGS: We first analysed the ability of TNF-α to induce apoptosis in freshly isolated tumour cells. For this purpose, sarcoma tumours (n = 8) treated ex vivo with TNF-α were processed for TUNEL staining. It revealed substantial endothelial cell apoptosis and levels of tumour cell apoptosis that varied from low to high. In order to investigate the role of p53 in TNF-α-induced cell death, human sarcoma cell lines (n = 9) with different TP53 and MDM2 status were studied for their sensitivity to TNF-α. TP53(Wt) cell lines were sensitive to TNF-α unless MDM2 was over-expressed. However, TP53(Mut) and TP53(Null) cell lines were resistant. TP53 suppression in TP53(Wt) cell lines abrogated TNF-α sensitivity and TP53 overexpression in TP53(Null) cell lines restored it. The use of small molecules that restore p53 activity, such as CP-31398 or Nutlin-3a, in association with TNF-α, potentiated the cell death of respectively TP53(Mut) and TP53(Wt)/MDM2(Ampl). In particular, CP-31398 was able to induce p53 as well as some of its apoptotic target genes in TP53(Mut) cells. In TP53(Wt)/MDM2(Ampl) cells, Nutlin-3a effects were associated with a decrease of TNF-α-induced NF-κB-DNA binding and correlated with a differential regulation of pro- and anti-apoptotic genes such as TP53BP2, GADD45, TGF-β1 and FAIM. CONCLUSION/SIGNIFICANCE: More effective therapeutic approaches are critically needed for the treatment of unresectable limb sarcomas. Our results show that restoring p53 activity in sarcoma cells correlated with increased sensitivity to TNF-α, suggesting that this strategy may be an important determinant of TNF-α-based sarcomas treatment

    ER-Alpha-cDNA As Part of a Bicistronic Transcript Gives Rise to High Frequency, Long Term, Receptor Expressing Cell Clones

    Get PDF
    Within the large group of Estrogen Receptor alpha (ERα)-negative breast cancer patients, there is a subgroup carrying the phenotype ERα−, PR−, and Her2−, named accordingly “Triple-Negative” (TN). Using cell lines derived from this TN group, we wished to establish cell clones, in which ERα is ectopically expressed, forming part of a synthetic lethality screening system. Initially, we generated cell transfectants expressing a mono-cistronic ERα transcription unit, adjacent to a separate dominant selectable marker transcription unit. However, the yield of ERα expressing colonies was rather low (5–12.5%), and only about half of these displayed stable ectopic ERα expression over time. Generation and maintenance of such cell clones under minimal exposure to the ERα ligand, did not improve yield or expression stability. Indeed, other groups have also reported grave difficulties in obtaining ectopic expression of ERα in ERα-deficient breast carcinoma cells. We therefore switched to transfecting these cell lines with pERα-IRES, a plasmid vector encoding a bicistronic translation mRNA template: ERα Open Reading Frame (ORF) being upstream followed by a dominant-positive selectable marker (hygroR) ORF, directed for translation from an Internal Ribosome Entry Site (IRES). Through usage of this bicistronic vector linkage system, it was possible to generate a very high yield of ERα expressing cell clones (50–100%). The stability over time of these clones was also somewhat improved, though variations between individual cell clones were evident. Our successful experience with ERα in this system may serve as a paradigm for other genes where ectopic expression meets similar hardships

    Checkpoint Signaling, Base Excision Repair, and PARP Promote Survival of Colon Cancer Cells Treated with 5-Fluorodeoxyuridine but Not 5-Fluorouracil

    Get PDF
    The fluoropyrimidines 5-fluorouracil (5-FU) and FdUrd (5-fluorodeoxyuridine; floxuridine) are the backbone of chemotherapy regimens for colon cancer and other tumors. Despite their widespread use, it remains unclear how these agents kill tumor cells. Here, we have analyzed the checkpoint and DNA repair pathways that affect colon tumor responses to 5-FU and FdUrd. These studies demonstrate that both FdUrd and 5-FU activate the ATR and ATM checkpoint signaling pathways, indicating that they cause genotoxic damage. Notably, however, depletion of ATM or ATR does not sensitize colon cancer cells to 5-FU, whereas these checkpoint pathways promote the survival of cells treated with FdUrd, suggesting that FdUrd exerts cytotoxicity by disrupting DNA replication and/or inducing DNA damage, whereas 5-FU does not. We also found that disabling the base excision (BER) repair pathway by depleting XRCC1 or APE1 sensitized colon cancer cells to FdUrd but not 5-FU. Consistent with a role for the BER pathway, we show that small molecule poly(ADP-ribose) polymerase 1/2 (PARP) inhibitors, AZD2281 and ABT-888, remarkably sensitized both mismatch repair (MMR)-proficient and -deficient colon cancer cell lines to FdUrd but not to 5-FU. Taken together, these studies demonstrate that the roles of genotoxin-induced checkpoint signaling and DNA repair differ significantly for these agents and also suggest a novel approach to colon cancer therapy in which FdUrd is combined with a small molecule PARP inhibitor

    AXL Mediates TRAIL Resistance in Esophageal Adenocarcinoma

    Get PDF
    The overexpression of AXL receptor tyrosine kinase is a frequent finding that has been associated with poor prognosis in esophageal adenocarcinoma (EAC). As the majority of EAC are intrinsically resistant to DNA-damaging therapies, an alternative therapeutic approach based on the activation of death receptors may be warranted. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been evaluated in clinical trials and found promising as anticancer agent with mild side effects; unfortunately, resistance to TRAIL remains a major clinical problem. Herein, we explored the role of AXL in TRAIL resistance and elucidated the underlying mechanism. Overexpression of AXL in OE33 and OE19 cells promoted cell survival and attenuated TRAIL-induced cellular and molecular markers of apoptosis. In contrast, knockdown of endogenous AXL sensitized FLO-1 cells to TRAIL. The mechanism by which AXL regulates TRAIL resistance was examined. Protein and mRNA expression of DR4 and DR5 death receptors was not downregulated by AXL. In addition, the possible involvement of FLICE-inhibitory protein (FLIP) in regulating the interaction of caspase-8 with Fas-associated death domain protein (FADD) was excluded, as AXL did not enhance FLIP expression or FLIP/FADD association. Alternatively, protein association of AXL with DR5, independent of TRAIL, was confirmed, suggesting that AXL could regulate DR5 receptor activity. The AXL/DR5 association had no negative effect on TRAIL-induced interaction with FADD. However, the AXL/DR5 interaction blocked the recruitment of caspase-8 to the death-inducing signal complex (DISC). Collectively, our findings uncover a novel mechanism of TRAIL resistance mediated by AXL through regulation of the DISC and provide strong evidence that AXL could be exploited as a therapeutic target to circumvent TRAIL resistance

    Advances in targeted therapies and new promising targets in esophageal cancer

    No full text
    Esophageal cancer, comprising squamous carcinoma and adenocarcinoma, is a leading cause of cancer-related death in the world. Notably, the incidence of esophageal adenocarcinoma has increased at an alarming rate in the Western world. Unfortunately, the standard first-line chemo-radiotherapeutic approaches are toxic and of limited efficacy in the treatment of a significant number of cancer patients. The molecular analysis of cancer cells has uncovered key genetic and epigenetic alterations underlying the development and progression of tumors. These discoveries have paved the way for the emergence of targeted therapy approaches. This review will highlight recent progress in the development of targeted therapies in esophageal cancer. This will include a review of drugs targeting receptor tyrosine kinases and other kinases in esophageal cancer. Additional studies will be required to develop a rational integration of these targeted agents with respect to histologic types of esophageal cancer and the optimal selection of cancer patients who would most likely benefit from targeted therapy. Identification of AURKA and AXL as key molecular players in esophageal tumorigenesis and drug resistance strongly justifies the evaluation of the available drugs against these targets in clinical trials

    Transcriptional upregulation of c‐MYC by AXL confers epirubicin resistance in esophageal adenocarcinoma

    No full text
    AXL receptor tyrosine kinase is overexpressed in esophageal adenocarcinoma (EAC) and several other types of malignancies; hence, it may be a valuable therapeutic target. Herein, we investigated the role of AXL in regulating c‐MYC expression and resistance to the chemotherapeutic agent epirubicin in EAC. Using in vitro EAC cell models, we found that AXL overexpression enhances epirubicin resistance in sensitive cells. Conversely, genetic knockdown or pharmacological inhibition of AXL sensitizes resistant cells to epirubicin. Notably, we showed that inhibition or knockdown of c‐MYC markedly sensitizes AXL‐dependent resistant cells to epirubicin, and our data demonstrated that AXL promotes epirubicin resistance through transcriptional upregulation of c‐MYC. We showed that AXL overexpression significantly increased transcriptional activity, mRNA, and protein levels of c‐MYC. Conversely, AXL knockdown reversed these effects. Mechanistic investigations indicated that AXL upregulates c‐MYC expression through activation of the AKT/β‐catenin signaling pathway. Data from a tumor xenograft mouse model indicated that inhibition of AXL with R428 in combination with epirubicin synergistically suppresses tumor growth and proliferation. Our results demonstrate that AXL promotes epirubicin resistance through transcriptional upregulation of c‐MYC in EAC. Our findings support future clinical trials to assess the therapeutic potential of R428 in epirubicin‐resistant tumors with overexpression of AXL and activation of c‐MYC
    corecore