522 research outputs found

    Nature of the Quantum Phase Transition in Clean, Itinerant Heisenberg Ferromagnets

    Full text link
    A comprehensive theory of the quantum phase transition in clean, itinerant Heisenberg ferromagnets is presented. It is shown that the standard mean-field description of the transition is invalid in spatial dimensions d3d\leq 3 due to the existence of soft particle-hole excitations that couple to the order parameter fluctuations and lead to an upper critical dimension dc+=3d_c^+ = 3. A generalized mean-field theory that takes these additional modes into account predicts a fluctuation-induced first-order transition. In a certain parameter regime, this first-order transition in turn is unstable with respect to a fluctuation-induced second-order transition. The quantum ferromagnetic transition may thus be either of first or of second-order, in agreement with experimental observations. A detailed discussion is given of the stability of the first-order transition, and of the critical behavior at the fluctuation-induced second-order transition. In d=3d=3, the latter is mean field-like with logarithmic corrections to scaling, and in d<3d<3 it can be controlled by means of a 3ϵ3-\epsilon expansion.Comment: 15 pp., revtex4, 6 eps figs; final version as publishe

    Fluctuation-Driven Quantum Phase Transitions in Clean Itinerant Ferromagnets

    Full text link
    The quantum phase transition in clean itinerant ferromagnets is analyzed. It is shown that soft particle-hole modes invalidate Hertz's mean-field theory for d3d \leq 3. A renormalized mean-field theory predicts a fluctuation-induced first order transition for 1<d31 < d \leq 3, whose stability is analyzed by renormalization group techniques. Depending on microscopic parameter values, the first order transition can be stable, or be pre-empted by a fluctuation-induced second order transition. The critical behavior at the latter is determined. The results are in agreement with recent experiments.Comment: 4 pp., REVTeX, no figs; final version as publishe

    Quantum critical behavior in disordered itinerant ferromagnets: Logarithmic corrections to scaling

    Full text link
    The quantum critical behavior of disordered itinerant ferromagnets is determined exactly by solving a recently developed effective field theory. It is shown that there are logarithmic corrections to a previous calculation of the critical behavior, and that the exact critical behavior coincides with that found earlier for a phase transition of undetermined nature in disordered interacting electron systems. This confirms a previous suggestion that the unspecified transition should be identified with the ferromagnetic transition. The behavior of the conductivity, the tunneling density of states, and the phase and quasiparticle relaxation rates across the ferromagnetic transition is also calculated.Comment: 15pp., REVTeX, 8 eps figs, final version as publishe

    Magnetic pair breaking in disordered superconducting films

    Full text link
    A theory for the effects of nonmagnetic disorder on the magnetic pair breaking rate α\alpha induced by paramagnetic impurities in quasi two-dimensional superconductors is presented. Within the framework of a strong-coupling theory for disordered superconductors, we find that the disorder dependence of α\alpha is determined by the disorder enhancements of both the electron-phonon coupling and the spin-flip scattering rate. These two effects have a tendency to cancel each other. With parameter values appropriate for Pb_{0.9} Bi_{0.1}, we find a pair breaking rate that is very weakly dependent on disorder for sheet resistances 0 < R < 2.5 kOhm, in agreement with a recent experiment by Chervenak and Valles.Comment: 6 pp., REVTeX, epsf, 2 eps figs, final version as publishe

    Split transition in ferromagnetic superconductors

    Full text link
    The split superconducting transition of up-spin and down-spin electrons on the background of ferromagnetism is studied within the framework of a recent model that describes the coexistence of ferromagnetism and superconductivity induced by magnetic fluctuations. It is shown that one generically expects the two transitions to be close to one another. This conclusion is discussed in relation to experimental results on URhGe. It is also shown that the magnetic Goldstone modes acquire an interesting structure in the superconducting phase, which can be used as an experimental tool to probe the origin of the superconductivity.Comment: REVTeX4, 15 pp, 7 eps fig

    Nonanalytic behavior of the spin susceptibility in clean Fermi systems

    Get PDF
    The wavevector and temperature dependent static spin susceptibility, \chi_s(Q,T), of clean interacting Fermi systems is considered in dimensions 1\leq d \leq 3. We show that at zero temperature \chi_s is a nonanalytic function of |Q|, with the leading nonanalyticity being |Q|^{d-1} for 1<d<3, and Q^2\ln|Q| for d=3. For the homogeneous spin susceptibility we find a nonanalytic temperature dependence T^{d-1} for 1<d<3. We give qualitative mode-mode coupling arguments to that effect, and corroborate these arguments by a perturbative calculation to second order in the electron-electron interaction amplitude. The implications of this, in particular for itinerant ferromagnetism, are discussed. We also point out the relation between our findings and established perturbative results for 1-d systems, as well as for the temperature dependence of \chi_s(Q=0) in d=3.Comment: 12pp., REVTeX, 5 eps figures, final version as publishe

    Columnar Fluctuations as a Source of Non-Fermi-Liquid Behavior in Weak Metallic Magnets

    Full text link
    It is shown that columnar fluctuations, in conjunction with weak quenched disorder, lead to a T^{3/2} temperature dependence of the electrical resistivity. This is proposed as an explanation of the observed non-Fermi-liquid behavior in the helimagnet MnSi, with one possible realization of the columnar fluctuations provided by skyrmion lines that have independently been proposed to be present in this material.Comment: 4pp, 4 figure

    Theory of many-fermion systems II: The case of Coulomb interactions

    Get PDF
    In a recent paper (cond-mat/9703164) a general field-theoretical description of many-fermion systems with short-ranged interactions has been developed. Here we extend this theory to the case of disordered electrons interacting via a Coulomb potential. A detailed discussion is given of the Ward identity that controls the soft modes in the system, and the generalized nonlinear sigma model for the Coulombic case is derived and discussed.Comment: 12 pp., REVTeX, no figs, final version as publishe

    Metallic Continuum Quantum Ferromagnets at Finite Temperature

    Full text link
    We study via renormalization group (RG) and large N methods the problem of continuum SU(N) quantum Heisenberg ferromagnets (QHF) coupled to gapless electrons. We establish the phase diagram of the dissipative problem and investigate the changes in the Curie temperature, magnetization, and magnetic correlation length due to dissipation and both thermal and quantum fluctuations. We show that the interplay between the topological term (Berry's phase) and dissipation leads to non-trivial effects for the finite temperature critical behavior.Comment: Corrected typos, new discussion of T=0 results, to appear in Europhys. Let

    Phase-ordering dynamics in itinerant quantum ferromagnets

    Full text link
    The phase-ordering dynamics that result from domain coarsening are considered for itinerant quantum ferromagnets. The fluctuation effects that invalidate the Hertz theory of the quantum phase transition also affect the phase ordering. For a quench into the ordered phase a transient regime appears, where the domain growth follows a different power law than in the classical case, and for asymptotically long times the prefactor of the t^{1/2} growth law has an anomalous magnetization dependence. A quench to the quantum critical point results in a growth law that is not a power-law function of time. Both phenomenological scaling arguments and renormalization-group arguments are given to derive these results, and estimates of experimentally relevant length and time scales are presented.Comment: 6pp., 1 eps fig, slightly expanded versio
    corecore