522 research outputs found
Nature of the Quantum Phase Transition in Clean, Itinerant Heisenberg Ferromagnets
A comprehensive theory of the quantum phase transition in clean, itinerant
Heisenberg ferromagnets is presented. It is shown that the standard mean-field
description of the transition is invalid in spatial dimensions due to
the existence of soft particle-hole excitations that couple to the order
parameter fluctuations and lead to an upper critical dimension . A
generalized mean-field theory that takes these additional modes into account
predicts a fluctuation-induced first-order transition. In a certain parameter
regime, this first-order transition in turn is unstable with respect to a
fluctuation-induced second-order transition. The quantum ferromagnetic
transition may thus be either of first or of second-order, in agreement with
experimental observations. A detailed discussion is given of the stability of
the first-order transition, and of the critical behavior at the
fluctuation-induced second-order transition. In , the latter is mean
field-like with logarithmic corrections to scaling, and in it can be
controlled by means of a expansion.Comment: 15 pp., revtex4, 6 eps figs; final version as publishe
Fluctuation-Driven Quantum Phase Transitions in Clean Itinerant Ferromagnets
The quantum phase transition in clean itinerant ferromagnets is analyzed. It
is shown that soft particle-hole modes invalidate Hertz's mean-field theory for
. A renormalized mean-field theory predicts a fluctuation-induced
first order transition for , whose stability is analyzed by
renormalization group techniques. Depending on microscopic parameter values,
the first order transition can be stable, or be pre-empted by a
fluctuation-induced second order transition. The critical behavior at the
latter is determined. The results are in agreement with recent experiments.Comment: 4 pp., REVTeX, no figs; final version as publishe
Quantum critical behavior in disordered itinerant ferromagnets: Logarithmic corrections to scaling
The quantum critical behavior of disordered itinerant ferromagnets is
determined exactly by solving a recently developed effective field theory. It
is shown that there are logarithmic corrections to a previous calculation of
the critical behavior, and that the exact critical behavior coincides with that
found earlier for a phase transition of undetermined nature in disordered
interacting electron systems. This confirms a previous suggestion that the
unspecified transition should be identified with the ferromagnetic transition.
The behavior of the conductivity, the tunneling density of states, and the
phase and quasiparticle relaxation rates across the ferromagnetic transition is
also calculated.Comment: 15pp., REVTeX, 8 eps figs, final version as publishe
Magnetic pair breaking in disordered superconducting films
A theory for the effects of nonmagnetic disorder on the magnetic pair
breaking rate induced by paramagnetic impurities in quasi
two-dimensional superconductors is presented. Within the framework of a
strong-coupling theory for disordered superconductors, we find that the
disorder dependence of is determined by the disorder enhancements of
both the electron-phonon coupling and the spin-flip scattering rate. These two
effects have a tendency to cancel each other. With parameter values appropriate
for Pb_{0.9} Bi_{0.1}, we find a pair breaking rate that is very weakly
dependent on disorder for sheet resistances 0 < R < 2.5 kOhm, in agreement with
a recent experiment by Chervenak and Valles.Comment: 6 pp., REVTeX, epsf, 2 eps figs, final version as publishe
Split transition in ferromagnetic superconductors
The split superconducting transition of up-spin and down-spin electrons on
the background of ferromagnetism is studied within the framework of a recent
model that describes the coexistence of ferromagnetism and superconductivity
induced by magnetic fluctuations. It is shown that one generically expects the
two transitions to be close to one another. This conclusion is discussed in
relation to experimental results on URhGe. It is also shown that the magnetic
Goldstone modes acquire an interesting structure in the superconducting phase,
which can be used as an experimental tool to probe the origin of the
superconductivity.Comment: REVTeX4, 15 pp, 7 eps fig
Nonanalytic behavior of the spin susceptibility in clean Fermi systems
The wavevector and temperature dependent static spin susceptibility,
\chi_s(Q,T), of clean interacting Fermi systems is considered in dimensions
1\leq d \leq 3. We show that at zero temperature \chi_s is a nonanalytic
function of |Q|, with the leading nonanalyticity being |Q|^{d-1} for 1<d<3, and
Q^2\ln|Q| for d=3. For the homogeneous spin susceptibility we find a
nonanalytic temperature dependence T^{d-1} for 1<d<3. We give qualitative
mode-mode coupling arguments to that effect, and corroborate these arguments by
a perturbative calculation to second order in the electron-electron interaction
amplitude. The implications of this, in particular for itinerant
ferromagnetism, are discussed. We also point out the relation between our
findings and established perturbative results for 1-d systems, as well as for
the temperature dependence of \chi_s(Q=0) in d=3.Comment: 12pp., REVTeX, 5 eps figures, final version as publishe
Columnar Fluctuations as a Source of Non-Fermi-Liquid Behavior in Weak Metallic Magnets
It is shown that columnar fluctuations, in conjunction with weak quenched
disorder, lead to a T^{3/2} temperature dependence of the electrical
resistivity. This is proposed as an explanation of the observed
non-Fermi-liquid behavior in the helimagnet MnSi, with one possible realization
of the columnar fluctuations provided by skyrmion lines that have independently
been proposed to be present in this material.Comment: 4pp, 4 figure
Theory of many-fermion systems II: The case of Coulomb interactions
In a recent paper (cond-mat/9703164) a general field-theoretical description
of many-fermion systems with short-ranged interactions has been developed. Here
we extend this theory to the case of disordered electrons interacting via a
Coulomb potential. A detailed discussion is given of the Ward identity that
controls the soft modes in the system, and the generalized nonlinear sigma
model for the Coulombic case is derived and discussed.Comment: 12 pp., REVTeX, no figs, final version as publishe
Metallic Continuum Quantum Ferromagnets at Finite Temperature
We study via renormalization group (RG) and large N methods the problem of
continuum SU(N) quantum Heisenberg ferromagnets (QHF) coupled to gapless
electrons. We establish the phase diagram of the dissipative problem and
investigate the changes in the Curie temperature, magnetization, and magnetic
correlation length due to dissipation and both thermal and quantum
fluctuations. We show that the interplay between the topological term (Berry's
phase) and dissipation leads to non-trivial effects for the finite temperature
critical behavior.Comment: Corrected typos, new discussion of T=0 results, to appear in
Europhys. Let
Phase-ordering dynamics in itinerant quantum ferromagnets
The phase-ordering dynamics that result from domain coarsening are considered
for itinerant quantum ferromagnets. The fluctuation effects that invalidate the
Hertz theory of the quantum phase transition also affect the phase ordering.
For a quench into the ordered phase a transient regime appears, where the
domain growth follows a different power law than in the classical case, and for
asymptotically long times the prefactor of the t^{1/2} growth law has an
anomalous magnetization dependence. A quench to the quantum critical point
results in a growth law that is not a power-law function of time. Both
phenomenological scaling arguments and renormalization-group arguments are
given to derive these results, and estimates of experimentally relevant length
and time scales are presented.Comment: 6pp., 1 eps fig, slightly expanded versio
- …