255 research outputs found

    Predicting gene promoter methylation in non-small-cell lung cancer by evaluating sputum and serum

    Get PDF
    The use of 5-methylcytosine demethylating agents in conjunction with inhibitors of histone deacetylation may offer a new therapeutic strategy for lung cancer. Monitoring the efficacy of gene demethylating treatment directly within the tumour may be difficult due to tumour location. This study determined the positive and negative predictive values of sputum and serum for detecting gene methylation in primary lung cancer. A panel of eight genes was evaluated by comparing methylation detected in the primary tumour biopsy to serum and sputum obtained from 72 patients with Stage III lung cancer. The prevalence for methylation of the eight genes in sputum (21–43%) approximated to that seen in tumours, but was 0.7–4.3-fold greater than detected in serum. Sputum was superior to serum in classifying the methylation status of genes in the tumour biopsy. The positive predictive value of the top four genes (p16, DAPK, PAX5 β, and GATA5) was 44–72% with a negative predictive value for these genes ⩾70%. The highest specificity was seen for the p16 gene, and this was associated with a odds ratio of six for methylation in the tumour when this gene was methylated in sputum. In contrast, for serum, the individual sensitivity for all genes was 6–27%. Evaluating the combined effect of methylation of at least one of the four most significant genes in sputum increased the positive predictive value to 86%. These studies demonstrate that sputum can be used effectively as a surrogate for tumour tissue to predict the methylation status of advanced lung cancer where biopsy is not feasible

    Particulate matter Air Pollution induces hypermethylation of the p16 promoter Via a mitochondrial ROS-JNK-DNMT1 pathway

    Get PDF
    Exposure of human populations to chronically elevated levels of ambient particulate matter air pollution < 2.5 μm in diameter (PM2.5) has been associated with an increase in lung cancer incidence. Over 70% of lung cancer cell lines exhibit promoter methylation of the tumor suppressor p16, an epigenetic modification that reduces its expression. We exposed mice to concentrated ambient PM2.5 via inhalation, 8 hours daily for 3 weeks and exposed primary murine alveolar epithelial cells to daily doses of fine urban PM (5 µg/cm2). In both mice and alveolar epithelial cells, PM exposure increased ROS production, expression of the DNA methyltransferase 1 (DNMT1), and methylation of the p16 promoter. In alveolar epithelial cells, increased transcription of DNMT1 and methylation of the p16 promoter were inhibited by a mitochondrially targeted antioxidant and a JNK inhibitor. These findings provide a potential mechanism by which PM exposure increases the risk of lung cancer

    Combined effects of cigarette smoking, gene polymorphisms and methylations of tumor suppressor genes on non small cell lung cancer: a hospital-based case-control study in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoking is the most established risk factor, and genetic variants and/or gene promoter methylations are also considered to play an essential role in development of lung cancer, but the pathogenesis of lung cancer is still unclear.</p> <p>Methods</p> <p>We collected the data of 150 cases and 150 age-matched and sex-matched controls on a Hospital-Based Case-Control Study in China. Face to face interviews were conducted using a standardized questionnaire. Gene polymorphism and methylation status were measured by RFLP-PCR and MSP, respectively. Logistic regressive model was used to estimate the odds ratios (OR) for different levels of exposure.</p> <p>Results</p> <p>After adjusted age and other potential confounding factors, smoking was still main risk factor and significantly increased 3.70-fold greater risk of NSCLC as compared with nonsmokers, and the ORs across increasing levels of pack years were 1, 3.54, 3.65 and 7.76, which the general dose-response trend was confirmed. Our striking findings were that the risk increased 5.16, 8.28 and 4.10-fold, respectively, for NSCLC with promoter hypermethylation of the <it>p16</it>, <it>DAPK </it>or <it>RARβ </it>gene in smokers with <it>CYP1A1 </it>variants, and the higher risk significantly increased in smokers with null <it>GSTM1 </it>and the OR was 17.84 for NSCLC with <it>p16 </it>promoter hypermethylation, 17.41 for <it>DAPK</it>, and 8.18 for <it>RARβ </it>in smokers with null <it>GSTM1 </it>compared with controls (all p < 0.01).</p> <p>Conclusion</p> <p>Our study suggests the strong combined effects of cigarette smoke, <it>CYP1A1 </it>and <it>GSTM1 </it>Polymorphisms, hypermethylations of <it>p16</it>, <it>DAPK </it>and <it>RARβ </it>promoters in NSCLC, implying complex pathogenesis of NSCLC should be given top priority in future research.</p

    Cigarette Smoking and p16INK4α Gene Promoter Hypermethylation in Non-Small Cell Lung Carcinoma Patients: A Meta-Analysis

    Get PDF
    BACKGROUND:Aberrant methylation of promoter DNA and transcriptional repression of specific tumor suppressor genes play an important role in carcinogenesis. Recently, many studies have investigated the association between cigarette smoking and p16(INK4α) gene hypermethylation in lung cancer, but could not reach a unanimous conclusion. METHODS AND FINDINGS:Nineteen cross-sectional studies on the association between cigarette smoking and p16(INK4α) methylation in surgically resected tumor tissues from non-small cell lung carcinoma (NSCLC) patients were identified in PubMed database until June 2011. For each study, a 2×2 cross-table was extracted. In total, 2,037 smoker and 765 nonsmoker patients were pooled with a fixed-effects model weighting for the inverse of the variance. Overall, the frequency of p16(INK4α) hypermethylation was higher in NSCLC patients with smoking habits than that in non-smoking patients (OR = 2.25, 95% CI = 1.81-2.80). The positive association between cigarette smoking and p16(INK4α) hypermethylation was similar in adenocarcinoma and squamous-cell carcinoma. In the stratified analyses, the association was stronger in Asian patients and in the studies with larger sample sizes. CONCLUSION:Cigarette smoking is positively correlated to p16(INK4α) gene hypermethylation in NSCLC patients

    K-ras mutations in sinonasal cancers in relation to wood dust exposure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer in the sinonasal tract is rare, but persons who have been occupationally exposed to wood dust have a substantially increased risk. It has been estimated that approximately 3.6 million workers are exposed to inhalable wood dust in EU. In previous small studies of this cancer, <it>ras </it>mutations were suggested to be related to wood dust exposure, but these studies were too limited to detect statistically significant associations.</p> <p>Methods</p> <p>We examined 174 cases of sinonasal cancer diagnosed in Denmark in the period from 1991 to 2001. To ensure uniformity, all histological diagnoses were carefully reviewed pathologically before inclusion. Paraffin embedded tumour samples from 58 adenocarcinomas, 109 squamous cell carcinomas and 7 other carcinomas were analysed for K-<it>ras </it>codon 12, 13 and 61 point mutations by restriction fragment length polymorphisms and direct sequencing. Information on occupational exposure to wood dust and to potential confounders was obtained from telephone interviews and from registry data.</p> <p>Results</p> <p>Among the patients in this study, exposure to wood dust was associated with a 21-fold increased risk of having an adenocarcinoma than a squamous cell carcinoma compared to unexposed [OR = 21.0, CI = 8.0–55.0]. K-<it>ras </it>was mutated in 13% of the adenocarcinomas (seven patients) and in 1% of squamous cell carcinomas (one patient). Of these eight mutations, five mutations were located in the codon 12. The exact sequence change of remaining three could not be identified unambiguously. Among the five identified mutations, the G→A transition was the most common, and it was present in tumour tissue from two wood dust exposed adenocarcinoma patients and one patient with unknown exposure. Previously published studies of sinonasal cancer also identify the GGT → GAT transition as the most common and often related to wood dust exposure.</p> <p>Conclusion</p> <p>Patients exposed to wood dust seemed more likely to develop adenocarcinoma compared to squamous cell carcinomas. K-<it>ras </it>mutations were detected in 13% of adenocarcinomas. In this study and previously published studies of sinonasal cancer the found K-<it>ras </it>mutations, were almost exclusively G → A transitions. In conclusion, our study, based on a large representative collection of human SNC tumours, indicates that K-<it>ras </it>mutations are relatively infrequent, and most commonly occur in adenocarcinomas. Wood dust exposure alone was not found to be explanatory for the G→A mutations, but combination of exposure to tobacco, wood dust, and possibly other occupational agents may be a more likely explanation. Overall, the study suggests a limited role for K-<it>ras </it>mutations in development of sinonasal cancer.</p

    Differential Epigenetic Regulation of TOX Subfamily High Mobility Group Box Genes in Lung and Breast Cancers

    Get PDF
    Aberrant cytosine methylation affects regulation of hundreds of genes during cancer development. In this study, a novel aberrantly hypermethylated CpG island in cancer was discovered within the TOX2 promoter. TOX2 was unmethylated in normal cells but 28% lung (n = 190) and 23% breast (n = 80) tumors were methylated. Expression of two novel TOX2 transcripts identified was significantly reduced in primary lung tumors than distant normal lung (p<0.05). These transcripts were silenced in methylated lung and breast cancer cells and 5-Aza-2-deoxycytidine treatment re-expressed both. Extension of these assays to TOX, TOX3, and TOX4 genes that share similar genomic structure and protein homology with TOX2 revealed distinct methylation profiles by smoking status, histology, and cancer type. TOX was almost exclusively methylated in breast (43%) than lung (5%) cancer, whereas TOX3 was frequently methylated in lung (58%) than breast (30%) tumors. TOX4 was unmethylated in all samples and showed the highest expression in normal lung. Compared to TOX4, expression of TOX, TOX2 and TOX3 in normal lung was 25, 44, and 88% lower, respectively, supporting the premise that reduced promoter activity confers increased susceptibility to methylation during lung carcinogenesis. Genome-wide assays revealed that siRNA-mediated TOX2 knockdown modulated multiple pathways while TOX3 inactivation targeted neuronal development and function. Although these knockdowns did not result in further phenotypic changes of lung cancer cells in vitro, the impact on tissue remodeling, inflammatory response, and cell differentiation pathways suggest a potential role for TOX2 in modulating tumor microenvironment

    Lifshitz spacetimes from AdS null and cosmological solutions

    Full text link
    We describe solutions of 10-dimensional supergravity comprising null deformations of AdS5×S5AdS_5\times S^5 with a scalar field, which have z=2z=2 Lifshitz symmetries. The bulk Lifshitz geometry in 3+1-dimensions arises by dimensional reduction of these solutions. The dual field theory in this case is a deformation of the N=4 super Yang-Mills theory. We discuss the holographic 2-point function of operators dual to bulk scalars. We further describe time-dependent (cosmological) solutions which have anisotropic Lifshitz scaling symmetries. We also discuss deformations of AdS×XAdS\times X in 11-dimensional supergravity, which are somewhat similar to the solutions above. In some cases here, we expect the field theory duals to be deformations of the Chern-Simons theories on M2-branes stacked at singularities.Comment: Latex, 29pgs, v3. references, minor clarifications (subsection on Lifshitz geometry seen by scalar probes) added, to appear in JHE

    Gene promoter hypermethylation in ductal lavage fluid from healthy BRCA gene mutation carriers and mutation-negative controls

    Get PDF
    INTRODUCTION: Female germline BRCA gene mutation carriers are at increased risk for developing breast cancer. The purpose of our study was to establish whether healthy BRCA mutation carriers demonstrate an increased frequency of aberrant gene promoter hypermethylation in ductal lavage (DL) fluid, compared with predictive genetic test negative controls, that might serve as a surrogate marker of BRCA1/2 mutation status and/or breast cancer risk. METHODS: The pattern of CpG island hypermethylation within the promoter region of a panel of four genes (RAR-β, HIN-1, Twist and Cyclin D2) was assessed by methylation-specific polymerase chain reaction using free DNA extracted from DL fluid. RESULTS: Fifty-one DL samples from 24 healthy women of known BRCA mutation status (7 BRCA1 mutation carriers, 12 BRCA2 mutation carriers and 5 controls) were available for methylation analysis. Eight of 19 (42.1%) BRCA mutation carriers were found to have at least one hypermethylated gene in the four-gene panel. Two BRCA mutation carriers, in whom aberrant methylation was found, also had duct epithelial cell atypia identified. No hypermethylation was found in DL samples from 5 negative controls(p = 0.13). CONCLUSION: We found substantial levels of aberrant methylation, with the use of a four-gene panel, in the fluid from the breasts of healthy BRCA mutation carriers compared with controls. Methylation analysis of free DNA in DL fluid may offer a useful surrogate marker for BRCA1/2 mutation status and/or breast cancer risk. Further studies are required for the evaluation of the specificity and predictive value of aberrant methylation in DL fluid for future breast cancer development in BRCA1/2 mutation carriers

    Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo

    Get PDF
    Histone deacetylation and DNA methylation have a central role in the control of gene expression in tumours, including transcriptional repression of tumour suppressor genes and genes involved in sensitivity to chemotherapy. Treatment of cisplatin-resistant cell lines with an inhibitor of DNA methyltransferases, 2-deoxy-5′azacytidine (decitabine), results in partial reversal of DNA methylation, re-expression of epigenetically silenced genes including hMLH1 and sensitisation to cisplatin both in vitro and in vivo. We have investigated whether the combination of decitabine and a clinically relevant inhibitor of histone deacetylase activity (belinostat, PXD101) can further increase the re-expression of genes epigenetically silenced by DNA methylation and enhance chemo-sensitisation in vivo at well-tolerated doses. The cisplatin-resistant human ovarian cell line A2780/cp70 has the hMLH1 gene methylated and is resistant to cisplatin both in vitro and when grown as a xenograft in mice. Treatment of A2780/cp70 with decitabine and belinostat results in a marked increase in expression of epigenetically silenced MLH1 and MAGE-A1 both in vitro and in vivo when compared with decitabine alone. The combination greatly enhanced the effects of decitabine alone on the cisplatin sensitivity of xenografts. As the dose of decitabine that can be given to patients and hence the maximum pharmacodynamic effect as a demethylating agent is limited by toxicity and eventual re-methylation of genes, we suggest that the combination of decitabine and belinostat could have a role in the efficacy of chemotherapy in tumours that have acquired drug resistance due to DNA methylation and gene silencing
    corecore