266 research outputs found

    Chaos of Yang-Mills Field in Class A Bianchi Spacetimes

    Full text link
    Studying Yang-Mills field and gravitational field in class A Bianchi spacetimes, we find that chaotic behavior appears in the late phase (the asymptotic future). In this phase, the Yang-Mills field behaves as that in Minkowski spacetime, in which we can understand it by a potential picture, except for the types VIII and IX. At the same time, in the initial phase (near the initial singularity), we numerically find that the behavior seems to approach the Kasner solution. However, we show that the Kasner circle is unstable and the Kasner solution is not an attractor. From an analysis of stability and numerical simulation, we find a Mixmaster-like behavior in Bianchi I spacetime. Although this result may provide a counterexample to the BKL (Belinskii, Khalatnikov and Lifshitz) conjecture, we show that the BKL conjecture is still valid in Bianchi IX spacetime. We also analyze a multiplicative effect of two types of chaos, that is, chaos with the Yang-Mills field and that in vacuum Bianchi IX spacetime. Two types of chaos seem to coexist in the initial phase. However, the effect due to the Yang-Mills field is much smaller than that of the curvature term.Comment: 15 pages, 8 figure

    Equilibrium Configuration of Black Holes and the Inverse Scattering Method

    Full text link
    The inverse scattering method is applied to the investigation of the equilibrium configuration of black holes. A study of the boundary problem corresponding to this configuration shows that any axially symmetric, stationary solution of the Einstein equations with disconnected event horizon must belong to the class of Belinskii-Zakharov solutions. Relationships between the angular momenta and angular velocities of black holes are derived.Comment: LaTeX, 14 pages, no figure

    On the Gravitational Collapse of a Gas Cloud in Presence of Bulk Viscosity

    Full text link
    We analyze the effects induced by the bulk viscosity on the dynamics associated to the extreme gravitational collapse. Aim of the work is to investigate whether the presence of viscous corrections to the evolution of a collapsing gas cloud influence the fragmentation process. To this end we study the dynamics of a uniform and spherically symmetric cloud with corrections due to the negative pressure contribution associated to the bulk viscosity phenomenology. Within the framework of a Newtonian approach (whose range of validity is outlined), we extend to the viscous case either the Lagrangian, either the Eulerian motion of the system and we treat the asymptotic evolution in correspondence to a viscosity coefficient of the form ζ=ζ0ρnu\zeta=\zeta_0 \rho^{nu} (ρ\rho being the cloud density and ζ0=const.\zeta_0=const.). We show how, in the adiabatic-like behavior of the gas (i.e. when the politropic index takes values 4/3<γ5/34/3<\gamma\leq5/3), density contrasts acquire, asymptotically, a vanishing behavior which prevents the formation of sub-structures. We can conclude that in the adiabatic-like collapse the top down mechanism of structures formation is suppressed as soon as enough strong viscous effects are taken into account. Such a feature is not present in the isothermal-like (i.e. 1γ<4/31\leq\gamma<4/3) collapse because the sub-structures formation is yet present and outlines the same behavior as in the non-viscous case. We emphasize that in the adiabatic-like collapse the bulk viscosity is also responsible for the appearance of a threshold scale beyond which perturbations begin to increase.Comment: 13 pages, no figur

    Bulk Viscosity Effects on the Early Universe Stability

    Full text link
    We present a discussion of the effects induced by the bulk viscosity on the very early Universe stability. The matter filling the cosmological (isotropic and homogeneous) background is described by a viscous fluid having an ultrarelativistic equation of state and whose viscosity coefficient is related to the energy density via a power-law of the form ζ=ζ0ρν\zeta=\zeta_0 \rho^\nu. The analytic expression of the density contrast (obtained for ν=1/2\nu=1/2) shows that, for small values of the constant ζ0\zeta_0, its behavior is not significantly different from the non-viscous one derived by E.M. Lifshitz. But as soon as ζ0\zeta_0 overcomes a critical value, the growth of the density contrast is suppressed forward in time by the viscosity and the stability of the Universe is favored in the expanding picture. On the other hand, in such a regime, the asymptotic approach to the initial singularity (taken at t=0t=0) is deeply modified by the apparency of significant viscosity in the primordial thermal bath i.e. the isotropic and homogeneous Universe admits an unstable collapsing picture. In our model this feature regards also scalar perturbations while in the non-viscous case it appears only for tensor modes.Comment: 8 pages, no figur

    Nonsingular Black Holes and Degrees of Freedom in Quantum Gravity

    Get PDF
    Spherically symmetric space-times provide many examples for interesting black hole solutions, which classically are all singular. Following a general program, space-like singularities in spherically symmetric quantum geometry, as well as other inhomogeneous models, are shown to be absent. Moreover, one sees how the classical reduction from infinitely many kinematical degrees of freedom to only one physical one, the mass, can arise, where aspects of quantum cosmology such as the problem of initial conditions play a role.Comment: 4 page

    Soliton Solutions with Real Poles in the Alekseev formulation of the Inverse-Scattering method

    Get PDF
    A new approach to the inverse-scattering technique of Alekseev is presented which permits real-pole soliton solutions of the Ernst equations to be considered. This is achieved by adopting distinct real poles in the scattering matrix and its inverse. For the case in which the electromagnetic field vanishes, some explicit solutions are given using a Minkowski seed metric. The relation with the corresponding soliton solutions that can be constructed using the Belinskii-Zakharov inverse-scattering technique is determined.Comment: 8 pages, LaTe

    Are Simple Real Pole Solutions Physical?

    Get PDF
    We consider exact solutions generated by the inverse scattering technique, also known as the soliton transformation. In particular, we study the class of simple real pole solutions. For quite some time, those solutions have been considered interesting as models of cosmological shock waves. A coordinate singularity on the wave fronts was removed by a transformation which induces a null fluid with negative energy density on the wave front. This null fluid is usually seen as another coordinate artifact, since there seems to be a general belief that that this kind of solution can be seen as the real pole limit of the smooth solution generated with a pair of complex conjugate poles in the transformation. We perform this limit explicitly, and find that the belief is unfounded: two coalescing complex conjugate poles cannot yield a solution with one real pole. Instead, the two complex conjugate poles go to a different limit, what we call a ``pole on a pole''. The limiting procedure is not unique; it is sensitive to how quickly some parameters approach zero. We also show that there exists no improved coordinate transformation which would remove the negative energy density. We conclude that negative energy is an intrinsic part of this class of solutions.Comment: 13 pages, 3 figure

    On the evolution of a large class of inhomogeneous scalar field cosmologies

    Get PDF
    The asymptotic behaviour of a family of inhomogeneous scalar field cosmologies with exponential potential is studied. By introducing new variables we can perform an almost complete analysis of the evolution of these cosmologies. Unlike the homogeneous case (Bianchi type solutions), when k^2<2 the models do not isotropize due to the presence of the inhomogeneitiesComment: 23 pages, 1 figure. Submitted to Classical and Quantum Gravit

    Vaccum solutions of five-dimensional Einstein equations generated by inverse scattering method II : Production of black ring solution

    Full text link
    We study vacuum solutions of five-dimensional Einstein equations generated by the inverse scattering method. We reproduce the black ring solution which was found by Emparan and Reall by taking the Euclidean Levi-Civita metric plus one-dimensional flat space as a seed. This transformation consists of two successive processes; the first step is to perform the three-solitonic transformation of the Euclidean Levi-Civita metric with one-dimensional flat space as a seed. The resulting metric is the Euclidean C-metric with extra one-dimensional flat space. The second is to perform the two-solitonic transformation by taking it as a new seed. Our result may serve as a stepping stone to find new exact solutions in higher dimensions.Comment: 12 pages, to be published in PR

    Mirror Images of String Cosmologies

    Get PDF
    A discrete symmetry of the four-dimensional string effective action is employed to derive spatially homogeneous and inhomogeneous string cosmologies from vacuum solutions of general relativity that admit two commuting spacelike Killing vectors. In particular, a tilted Bianchi type V cosmology is generated from a vacuum type VI_h solution and a plane wave solution with a bounded and oscillating dilaton field is found from a type VIIh{\rm VII}_h model. Further applications are briefly discussed.Comment: 10 pages plain late
    corecore