8 research outputs found

    Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains

    No full text
    © 2018, The Author(s), under exclusive licence to Springer Nature America, Inc. Accumulation of tau and amyloid-β are two pathologic hallmarks of Alzheimer’s disease. We conducted an epigenome-wide association study using the histone 3 lysine 9 acetylation (H3K9ac) mark in 669 aged human prefrontal cortices; in contrast with amyloid-β, tau protein burden had a broad effect on the epigenome, affecting 5,990 of 26,384 H3K9ac domains. Tau-related alterations aggregated in large genomic segments reflecting spatial chromatin organization, and the magnitude of these effects correlated with the segment’s nuclear lamina association. Functional relevance of these chromatin changes was demonstrated by (1) consistent transcriptional changes in three independent datasets and (2) similar findings in two mouse models of Alzheimer’s disease. Finally, we found that tau overexpression in induced pluripotent stem cell-derived neurons altered chromatin structure and that these effects could be blocked by a small molecule predicted to reverse the tau effect. Thus, we report broad tau-driven chromatin rearrangements in the aging human brain that may be reversible with heat-shock protein 90 (Hsp90) inhibitors

    DataSheet_1_Human regulatory memory B cells defined by expression of TIM-1 and TIGIT are dysfunctional in multiple sclerosis.zip

    No full text
    BackgroundRegulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS.MethodsFACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis.ResultsTIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells.ConclusionThese findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.</p

    Molecular prioritization strategies to identify functional genetic variants in the cardiovascular disease-associated expression QTL Vanin-1

    No full text
    There is now good evidence that non-coding sequence variants are involved in the heritability of many common complex traits. The current 'gold standard' approach for assessing functionality is the in vitro reporter gene assay to assess allelic differences in transcriptional activity, usually followed by electrophoretic mobility shift assays to assess allelic differences in transcription factor binding. Although widely used, these assays have inherent limitations, including the lack of endogenous chromatin context. Here we present a more contemporary approach to assessing functionality of non-coding sequence variation within the Vanin-1 (VNN1) promoter. By combining 'gold standard' assays with in vivo assessments of chromatin accessibility, we greatly increase our confidence in the statistically assigned functional relevance. The standard assays revealed the-137 single nucleotide variant to be functional but the-587 variant to have no functional relevance. However, our in vivo tests show an allelic difference in chromatin accessibility surrounding the-587 variant supporting strong functional potential at both sites. Our approach advances the identification of functional variants by providing strong in vivo biological evidence for function

    Diverse biological activities of the vascular non-inflammatory molecules - The Vanin pantetheinases

    No full text
    The Vanin genes are a family that encode pantetheinases involved in recycling Coenzyme A, catalysing the breakdown of intermediate pantetheine to vitamin B5 for reuse in CoA biosynthesis. The role of pantetheinase in this most fundamental of cellular processes, was substantially characterised by the 1970s. The next 20 years saw little further interest in pantetheinase until various genetic studies implicated the Vanin locus in a range of normal and disease phenotypes, and a consequent interest in the other product of pantetheinase activity, cysteamine. This report seeks to bring together the early biochemical studies with recent biological data implicating cysteamine as a regulator of the oxidative state of a cell. Numerous studies now report a role for Vanin in inflammation, oxidative stress, cell migration and numerous diseases including cardiovascular disease

    On the immunoregulatory role of statins in multiple sclerosis: the effects on Th17 cells

    No full text
    corecore