3,294 research outputs found

    Speckle Control with a remapped-pupil PIAA-coronagraph

    Full text link
    The PIAA is a now well demonstrated high contrast technique that uses an intermediate remapping of the pupil for high contrast coronagraphy (apodization), before restoring it to recover classical imaging capabilities. This paper presents the first demonstration of complete speckle control loop with one such PIAA coronagraph. We show the presence of a complete set of remapping optics (the so-called PIAA and matching inverse PIAA) is transparent to the wavefront control algorithm. Simple focal plane based wavefront control algorithms can thus be employed, without the need to model remapping effects. Using the Subaru Coronagraphic Extreme AO (SCExAO) instrument built for the Subaru Telescope, we show that a complete PIAA-coronagraph is compatible with a simple implementation of a speckle nulling technique, and demonstrate the benefit of the PIAA for high contrast imaging at small angular separation.Comment: 6 figures, submitted to PAS

    How Dark Matter Reionized The Universe

    Full text link
    Although empirical evidence indicates that that the universe's gas had become ionized by redshift z ~ 6, the mechanism by which this transition occurred remains unclear. In this article, we explore the possibility that dark matter annihilations may have played the dominant role in this process. Energetic electrons produced in these annihilations can scatter with the cosmic microwave background to generate relatively low energy gamma rays, which ionize and heat gas far more efficiently than higher energy prompt photons. In contrast to previous studies, we find that viable dark matter candidates with electroweak scale masses can naturally provide the dominant contribution to the reionization of the universe. Intriguingly, we find that dark matter candidates capable of producing the recent cosmic ray excesses observed by PAMELA and/or ATIC are also predicted to lead to the full reionization of the universe by z ~ 6.Comment: 10 pages, 6 figures; error in figure 2 corrected, conclusions unchange

    Scientific Visualisation of Extremely Large Distributed Astronomical Surveys

    Get PDF
    Interactive real-time visualisation of large data sets plays an important role in scientific research. It is even more relevant for astronomy where new cutting edge large telescopes will generate tens of petabytes sky surveys. We describe our solution, developed in context of the Euclid space mission whose large astronomical imaging data will be distributed over several heterogeneous Science Data Centres (SDCs) across the world. In our visualisation architecture for distributed data, millions of survey images (HiPS) distributed over SDCs are efficiently transported and combined to deliver image(s) of interest at the desired resolution (up to pixel level) to the user. This is achieved by optimally utilising a combination of several modern tools consisting of http servers, a Front-End Node and load-balancer (FEN), reverse proxies, PHP/Python scripts, MySQL databases, including on the fly image generation/combination which all feed (only) the required information to the Aladin interactive visualisation tool at the remote user's Personal Computer (PC). It has potential applications for large projects (e.g., Square Kilometre Array) having data distributed across several locations

    Scientific Visualisation of Extremely Large Distributed Astronomical Surveys

    Get PDF
    Interactive real-time visualisation of large data sets plays an important role in scientific research. It is even more relevant for astronomy where new cutting edge large telescopes will generate tens of petabytes sky surveys. We describe our solution, developed in context of the Euclid space mission whose large astronomical imaging data will be distributed over several heterogeneous Science Data Centres (SDCs) across the world. In our visualisation architecture for distributed data, millions of survey images (HiPS) distributed over SDCs are efficiently transported and combined to deliver image(s) of interest at the desired resolution (up to pixel level) to the user. This is achieved by optimally utilising a combination of several modern tools consisting of http servers, a Front-End Node and load-balancer (FEN), reverse proxies, PHP/Python scripts, MySQL databases, including on the fly image generation/combination which all feed (only) the required information to the Aladin interactive visualisation tool at the remote user's Personal Computer (PC). It has potential applications for large projects (e.g., Square Kilometre Array) having data distributed across several locations

    Scientific Visualisation of Extremely Large Distributed Astronomical Surveys

    Get PDF

    Scientific Visualisation of Extremely Large Distributed Astronomical Surveys

    Get PDF
    Interactive real-time visualisation of large data sets plays an important role in scientific research. It is even more relevant for astronomy where new cutting edge large telescopes will generate tens of petabytes sky surveys. We describe our solution, developed in context of the Euclid space mission whose large astronomical imaging data will be distributed over several heterogeneous Science Data Centres (SDCs) across the world. In our visualisation architecture for distributed data, millions of survey images (HiPS) distributed over SDCs are efficiently transported and combined to deliver image(s) of interest at the desired resolution (up to pixel level) to the user. This is achieved by optimally utilising a combination of several modern tools consisting of http servers, a Front-End Node and load-balancer (FEN), reverse proxies, PHP/Python scripts, MySQL databases, including on the fly image generation/combination which all feed (only) the required information to the Aladin interactive visualisation tool at the remote user's Personal Computer (PC). It has potential applications for large projects (e.g., Square Kilometre Array) having data distributed across several locations

    Target and (Astro-)WISE technologies - Data federations and its applications

    Full text link
    After its first implementation in 2003 the Astro-WISE technology has been rolled out in several European countries and is used for the production of the KiDS survey data. In the multi-disciplinary Target initiative this technology, nicknamed WISE technology, has been further applied to a large number of projects. Here, we highlight the data handling of other astronomical applications, such as VLT-MUSE and LOFAR, together with some non-astronomical applications such as the medical projects Lifelines and GLIMPS, the MONK handwritten text recognition system, and business applications, by amongst others, the Target Holding. We describe some of the most important lessons learned and describe the application of the data-centric WISE type of approach to the Science Ground Segment of the Euclid satellite.Comment: 9 pages, 5 figures, Proceedngs IAU Symposium No 325 Astroinformatics 201

    Velocity Dispersion of Dissolving OB Associations Affected by External Pressure of Formation Environment

    Full text link
    This paper presents a possible way to understand dissolution of OB associations (or groups). Assuming rapid escape of parental cloud gas from associations, we show that the shadow of the formation environment for associations can be partially imprinted on the velocity dispersion at their dissolution. This conclusion is not surprising as long as associations are formed in a multiphase interstellar medium, because the external pressure should suppress expansion caused by the internal motion of the parental clouds. Our model predicts a few km s−1^{-1} as the internal velocity dispersion. Observationally, the internal velocity dispersion is ∼1\sim 1 km s−1^{-1} which is smaller than our prediction. This suggests that the dissipation of internal energy happens before the formation of OB associations.Comment: 6 pages. AJ accepte
    • …
    corecore