8 research outputs found
3-Methylpiperidinium ionic liquids
[EN] A wide range of room temperature ionic liquids based on the 3-methylpiperdinium cation core were produced from 3-methylpiperidine, which is a derivative of DYTEKs (R) A amine. First, reaction with 1-bromoalkanes or 1-bromoalkoxyalkanes generated the corresponding tertiary amines (Rm beta pip, R = alkyl or alkoxyalkyl); further quaternisation reactions with the appropriate methylating agents yielded the quaternary [Rmm(beta)pip]X salts (X-= I-, [CF3CO2]-or [OTf](-); Tf = -SO2CF3), and [Rmm(beta)pip][NTf2] were prepared by anion metathesis from the corresponding iodides. All [NTf2]-salts are liquids at room temperature. [Rmm(beta)pip]X (X-= I-, [CF3CO2]-or [OTf](-)) are low-melting solids when R = alkyl, but room temperature liquids upon introduction of ether functionalities on R. Neither of the 3-methylpiperdinium ionic liquids showed any signs of crystallisation, even well below 0 degrees C. Some related non-C-substituted piperidinium and pyrrolidinium analogues were prepared and studied for comparison. Crystal structures of 1-hexyl-1,3-dimethylpiperidinium tetraphenylborate, 1-butyl-3-methylpiperidinium bromide, 1-(2-methoxyethyl)1- methylpiperidinium chloride and 1-(2-methoxyethyl)-1-methylpyrrolidinium bromide are reported. Extensive structural and physical data are collected and compared to literature data, with special emphasis on the systematic study of the cation ring size and/or asymmetry effects on density, viscosity and ionic conductivity, allowing general trends to be outlined. Cyclic voltammetry shows that 3-methylpiperidinium ionic liquids, similarly to azepanium, piperidinium or pyrrolidinium counterparts, are extremely electrochemically stable; the portfolio of useful alternatives for safe and high-performing electrolytes is thus greatly extended.We would like to acknowledge the EPSRC NCS in Southampton for the single crystal X-ray diffraction data collection and INVISTA Intermediates for funding.Belhocine, T.; Forsyth, SA.; Gunaratne, HQN.; Nieuwenhuyzen, M.; Nockemann, P.; Vaca Puga, A.; Seddon, KR.... (2015). 3-Methylpiperidinium ionic liquids. Physical Chemistry Chemical Physics. 17(16):10398-10416. doi:10.1039/C4CP05936KS10398104161716C. Mikolajczak , M.Kahn, K.White and R. T.Long, Lithium-ion Batteries Hazard and Use Assessment, Springer, New York, 2012Choi, N.-S., Chen, Z., Freunberger, S. A., Ji, X., Sun, Y.-K., Amine, K., ⌠Bruce, P. G. (2012). Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angewandte Chemie International Edition, 51(40), 9994-10024. doi:10.1002/anie.201201429Xing, H., Liao, C., Yang, Q., Veith, G. M., Guo, B., Sun, X.-G., ⌠Dai, S. (2014). Ambient Lithium-SO2Batteries with Ionic Liquids as Electrolytes. Angewandte Chemie International Edition, 53(8), 2099-2103. doi:10.1002/anie.201309539Lithium Ion Rechargeable Batteries, ed. K. Ozawa, Wiley-VCH, Weinheim, 2009Advances in Lithium-Ion Batteries, ed. W. A. van Schalkwijk and B. Scrosati, Kluwer Academic/Plenum Publishers, New York, 2002J. B. Goodenough , H.Abruna and M.Buchanan, Basic Research Needs For Electrical Energy Storage: Report of the Basic Energy Sciences Workshop For Electrical Energy Storage, 2007Kar, M., Simons, T. J., Forsyth, M., & MacFarlane, D. R. (2014). Ionic liquid electrolytes as a platform for rechargeable metalâair batteries: a perspective. Phys. Chem. Chem. Phys., 16(35), 18658-18674. doi:10.1039/c4cp02533dBalaish, M., Kraytsberg, A., & Ein-Eli, Y. (2014). A critical review on lithiumâair battery electrolytes. Physical Chemistry Chemical Physics, 16(7), 2801. doi:10.1039/c3cp54165gElectrochemical Aspects of Ionic Liquids, ed. H. Ohno, Wiley-Interscience, Hoboken, 2005Hapiot, P., & Lagrost, C. (2008). Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chemical Reviews, 108(7), 2238-2264. doi:10.1021/cr0680686Endres, F., & Zein El Abedin, S. (2006). Air and water stable ionic liquids in physical chemistry. Physical Chemistry Chemical Physics, 8(18), 2101. doi:10.1039/b600519pArmand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8(8), 621-629. doi:10.1038/nmat2448Lewandowski, A., & Ĺwiderska-Mocek, A. (2009). Ionic liquids as electrolytes for Li-ion batteriesâAn overview of electrochemical studies. Journal of Power Sources, 194(2), 601-609. doi:10.1016/j.jpowsour.2009.06.089Buzzeo, M. C., Evans, R. G., & Compton, R. G. (2004). Non-Haloaluminate Room-Temperature Ionic Liquids in ElectrochemistryâA Review. ChemPhysChem, 5(8), 1106-1120. doi:10.1002/cphc.200301017MacFarlane, D. R., & Seddon, K. R. (2007). Ionic LiquidsâProgress on the Fundamental Issues. Australian Journal of Chemistry, 60(1), 3. doi:10.1071/ch06478Buzzeo, M. C., Hardacre, C., & Compton, R. G. (2006). Extended Electrochemical Windows Made Accessible by Room Temperature Ionic Liquid/Organic Solvent Electrolyte Systems. ChemPhysChem, 7(1), 176-180. doi:10.1002/cphc.200500361D. Teramoto , R.Yokoyama, H.Kagawa, T.Sada and N.Ogata, in Molten Salts and Ionic Liquids: Never the Twain?, ed. M. Gaune-Escard and K. R. Seddon, John Wiley & Sons, Inc., Hoboken, 2010, pp. 367â388Matsumoto, H., Sakaebe, H., & Tatsumi, K. (2005). Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. Journal of Power Sources, 146(1-2), 45-50. doi:10.1016/j.jpowsour.2005.03.103Rogers, E. I., SĚljukicĚ, B., Hardacre, C., & Compton, R. G. (2009). Electrochemistry in Room-Temperature Ionic Liquids: Potential Windows at Mercury Electrodes. Journal of Chemical & Engineering Data, 54(7), 2049-2053. doi:10.1021/je800898zSun, J., Forsyth, M., & MacFarlane, D. R. (1998). Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion. The Journal of Physical Chemistry B, 102(44), 8858-8864. doi:10.1021/jp981159pPohlmann, S., Olyschläger, T., Goodrich, P., Vicente, J. A., Jacquemin, J., & Balducci, A. (2015). Mixtures of Azepanium Based Ionic Liquids and Propylene Carbonate as High Voltage Electrolytes for Supercapacitors. Electrochimica Acta, 153, 426-432. doi:10.1016/j.electacta.2014.11.189MacFarlane, D. R., Meakin, P., Sun, J., Amini, N., & Forsyth, M. (1999). Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases. The Journal of Physical Chemistry B, 103(20), 4164-4170. doi:10.1021/jp984145sJ. S. Wilkes and C. L.Hussey, Selection of Cations for Ambient Temperature Chloroaluminate Molten Salts Using MNDO Molecular Orbital Calculations, Frank J. Seiler Research Laboratory Technical Report 1982P. C. Trulove and R. A.Mantz, in Ionic Liquids in Synthesis, ed. P. Wasserscheid and T. Welton, Wiley-VCH, Weinheim, 2nd edn, 2008, pp. 141â174OâMahony, A. M., Silvester, D. S., Aldous, L., Hardacre, C., & Compton, R. G. (2008). Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids. Journal of Chemical & Engineering Data, 53(12), 2884-2891. doi:10.1021/je800678eJin, J., Li, H. H., Wei, J. P., Bian, X. K., Zhou, Z., & Yan, J. (2009). Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte. Electrochemistry Communications, 11(7), 1500-1503. doi:10.1016/j.elecom.2009.05.040Howlett, P. C., MacFarlane, D. R., & Hollenkamp, A. F. (2004). High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid. Electrochemical and Solid-State Letters, 7(5), A97. doi:10.1149/1.1664051Sakaebe, H., Matsumoto, H., & Tatsumi, K. (2007). Application of room temperature ionic liquids to Li batteries. Electrochimica Acta, 53(3), 1048-1054. doi:10.1016/j.electacta.2007.02.054Abdallah, T., Lemordant, D., & Claude-Montigny, B. (2012). Are room temperature ionic liquids able to improve the safety of supercapacitors organic electrolytes without degrading the performances? Journal of Power Sources, 201, 353-359. doi:10.1016/j.jpowsour.2011.10.115Montanino, M., Moreno, M., Carewska, M., Maresca, G., Simonetti, E., Lo Presti, R., ⌠Appetecchi, G. B. (2014). Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems. Journal of Power Sources, 269, 608-615. doi:10.1016/j.jpowsour.2014.07.027Lu, Y., Korf, K., Kambe, Y., Tu, Z., & Archer, L. A. (2013). Ionic-Liquid-Nanoparticle Hybrid Electrolytes: Applications in Lithium Metal Batteries. Angewandte Chemie International Edition, 53(2), 488-492. doi:10.1002/anie.201307137Belhocine, T., Forsyth, S. A., Gunaratne, H. Q. N., Nieuwenhuyzen, M., Puga, A. V., Seddon, K. R., ⌠Whiston, K. (2011). New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows. Green Chem., 13(1), 59-63. doi:10.1039/c0gc00534gINVISTAâ˘, DYTEKÂŽ, http://dytek.invista.com/R. W. Alder , J. G. E.Phillips, L.Huang and X.Huang, Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd, 2001Zhou, Z.-B., Matsumoto, H., & Tatsumi, K. (2006). Cyclic Quaternary Ammonium Ionic Liquids with Perfluoroalkyltrifluoroborates: Synthesis, Characterization, and Properties. Chemistry - A European Journal, 12(8), 2196-2212. doi:10.1002/chem.200500930Coles, S. J., & Gale, P. A. (2012). Changing and challenging times for service crystallography. Chem. Sci., 3(3), 683-689. doi:10.1039/c2sc00955bSheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726Allen, F. H. (2002). The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallographica Section B Structural Science, 58(3), 380-388. doi:10.1107/s0108768102003890Allen, F. H., & Motherwell, W. D. S. (2002). Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Crystallographica Section B Structural Science, 58(3), 407-422. doi:10.1107/s0108768102004895Belhocine, T., Forsyth, S. A., Gunaratne, H. Q. N., Nieuwenhuyzen, M., Nockemann, P., Puga, A. V., ⌠Whiston, K. (2011). Azepanium ionic liquids. Green Chemistry, 13(11), 3137. doi:10.1039/c1gc15189dPandey, G., Devi Reddy, G., & Kumaraswamy, G. (1994). Photoinduced electron transfer (PET) promoted cyclisations of 1-[N-alkyl-N-(trimethylsilyl)methyl]amines tethered to proximate olefin: mechanistic and synthetic perspectives. Tetrahedron, 50(27), 8185-8194. doi:10.1016/s0040-4020(01)85300-xPandey, G., Kumaraswamy, G., & Bhalerao, U. . (1989). Photoinduced set generation of Îą-amineradicalsâŻ: A practical method for the synthesis of pyrrolidines and piperidines. Tetrahedron Letters, 30(44), 6059-6062. doi:10.1016/s0040-4039(01)93854-7A. J. Carmichael , M.Deetlefs, M. J.Earle, U.FrĂśhlich and K. R.Seddon, in Ionic Liquids as Green Solvents: Progress and Prospects, ed. R. D. Rogers and K. R. Seddon, American Chemical Society, Washington, DC, 2003, pp. 14â31Fang, S., Zhang, Z., Jin, Y., Yang, L., Hirano, S., Tachibana, K., & Katayama, S. (2011). New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. Journal of Power Sources, 196(13), 5637-5644. doi:10.1016/j.jpowsour.2011.02.047Shirota, H., Funston, A. M., Wishart, J. F., & Castner, E. W. (2005). Ultrafast dynamics of pyrrolidinium cation ionic liquids. The Journal of Chemical Physics, 122(18), 184512. doi:10.1063/1.1893797Ferrari, S., Quartarone, E., Mustarelli, P., Magistris, A., Protti, S., Lazzaroni, S., ⌠Albini, A. (2009). A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries. Journal of Power Sources, 194(1), 45-50. doi:10.1016/j.jpowsour.2008.12.013Appetecchi, G. B., Scaccia, S., Tizzani, C., Alessandrini, F., & Passerini, S. (2006). Synthesis of Hydrophobic Ionic Liquids for Electrochemical Applications. Journal of The Electrochemical Society, 153(9), A1685. doi:10.1149/1.2213420Morishima, I., Yoshikawa, K., & Okada, K. (1976). Studies on the proton and carbon-13 contact shifts for .sigma.-bonded molecules. Stereospecific electron spin transmission in cyclic and bicyclic amines. Journal of the American Chemical Society, 98(13), 3787-3793. doi:10.1021/ja00429a009Garbisch, E. W., & Griffith, M. G. (1968). Proton couplings in cyclohexane. Journal of the American Chemical Society, 90(23), 6543-6544. doi:10.1021/ja01025a069R. K. Harris , Nuclear Magnetic Resonance Spectroscopy, Pitman Books Limited, London, 1983E. L. Eliel , S. H.Wilen and M. P.Doyle, Basic Organic Stereochemistry, Wiley-Interscience, New York, 2001, pp. 436â491Glorius, F., Spielkamp, N., Holle, S., Goddard, R., & Lehmann, C. W. (2004). Efficient Asymmetric Hydrogenation of Pyridines. Angewandte Chemie International Edition, 43(21), 2850-2852. doi:10.1002/anie.200453942Matczak-Jon, E., Videnova-Adrabi?ska, V., Burzy?ska, A., Kafarski, P., & Lis, T. (2005). Solid-State Molecular Organization and Solution Behavior of Methane-1,1-Diphosphonic Acid Derivatives of Heterocyclic Amines: The Role of the Topochemical Ring Modification and the Intramolecular Hydrogen Bonds in Monosubstituted Piperid-1-ylmethane-1,1-diphosphonic Acids. Chemistry - A European Journal, 11(8), 2357-2372. doi:10.1002/chem.200400348Xu, Q. (2012). 3-Methylpiperidinium bromide. Acta Crystallographica Section E Structure Reports Online, 68(6), o1654-o1654. doi:10.1107/s160053681201971xXu, Q. (2012). Bis(3-methylpiperidinium) naphthalene-1,5-disulfonate. Acta Crystallographica Section E Structure Reports Online, 68(6), o1687-o1687. doi:10.1107/s160053681202003xBerg, R. W., Deetlefs, M., Seddon, K. R., Shim, I., & Thompson, J. M. (2005). Raman and ab Initio Studies of Simple and Binary 1-Alkyl-3-methylimidazolium Ionic Liquids. The Journal of Physical Chemistry B, 109(40), 19018-19025. doi:10.1021/jp050691rBondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001Van den Berg, J.-A., & Seddon, K. R. (2003). Critical Evaluation of CâH¡¡¡X Hydrogen Bonding in the Crystalline State. Crystal Growth & Design, 3(5), 643-661. doi:10.1021/cg034083hHenderson, M. A., Luo, J., Oliver, A., & McIndoe, J. S. (2011). The Pauson-Khand Reaction: A Gas-Phase and Solution-Phase Examination Using Electrospray Ionization Mass Spectrometry. Organometallics, 30(20), 5471-5479. doi:10.1021/om200717rDean, P. M., Pringle, J. M., & MacFarlane, D. R. (2008). 1-Methyl-1-propylpyrrolidinium chloride. Acta Crystallographica Section E Structure Reports Online, 64(3), o637-o637. doi:10.1107/s1600536808005229Laus, G., Bentivoglio, G., Kahlenberg, V., Griesser, U. J., Schottenberger, H., & Nauer, G. (2008). Syntheses, crystal structures, and polymorphism of quaternary pyrrolidinium chlorides. CrystEngComm, 10(6), 748. doi:10.1039/b718917fDean, P. M., Clare, B. R., Armel, V., Pringle, J. M., Forsyth, C. M., Forsyth, M., & MacFarlane, D. R. (2009). Structural Characterization of Novel Ionic Salts Incorporating Trihalide Anions. Australian Journal of Chemistry, 62(4), 334. doi:10.1071/ch08456Fei, Z., Zhao, D., Scopelliti, R., & Dyson, P. J. (2004). Organometallic Complexes Derived from Alkyne-Functionalized Imidazolium Salts. Organometallics, 23(7), 1622-1628. doi:10.1021/om034248jLaus, G., Schwärzler, A., Bentivoglio, G., Hummel, M., Kahlenberg, V., Wurst, K., ⌠Schottenberger, H. (2008). Synthesis and Crystal Structures of 1-Alkoxy-3-alkylimidazolium Salts Including Ionic Liquids, 1-Alkylimidazole 3-oxides and 1-Alkylimidazole Perhydrates. Zeitschrift fĂźr Naturforschung B, 63(4), 447-464. doi:10.1515/znb-2008-0411Murray, S. M., OâBrien, R. A., Mattson, K. M., Ceccarelli, C., Sykora, R. E., West, K. N., & Davis, J. H. (2010). The Fluid-Mosaic Model, Homeoviscous Adaptation, and Ionic Liquids: Dramatic Lowering of the Melting Point by Side-Chain Unsaturation. Angewandte Chemie International Edition, 49(15), 2755-2758. doi:10.1002/anie.200906169Dupont, J., Suarez, P. A. Z., De Souza, R. F., Burrow, R. A., & Kintzinger, J.-P. (2000). C-H-Ď Interactions in 1-n-Butyl-3-methylimidazolium Tetraphenylborate Molten Salt: Solid and Solution Structures. Chemistry - A European Journal, 6(13), 2377-2381. doi:10.1002/1521-3765(20000703)6:133.0.co;2-lStenzel, O., Raubenheimer, H. G., & Esterhuysen, C. (2002). Biphasic hydroformylation in new molten saltsâanalogies and differences to organic solvents. Journal of the Chemical Society, Dalton Transactions, (6), 1132. doi:10.1039/b107720aNiehues, M., Kehr, G., Erker, G., Wibbeling, B., FrĂśhlich, R., Blacque, O., & Berke, H. (2002). Structural characterization of Group 4 transition metal halide bis-Arduengo carbene complexes MCl4L2: Journal of Organometallic Chemistry, 663(1-2), 192-203. doi:10.1016/s0022-328x(02)01731-xArduengo, A. J., Dias, H. V. R., Harlow, R. L., & Kline, M. (1992). Electronic stabilization of nucleophilic carbenes. Journal of the American Chemical Society, 114(14), 5530-5534. doi:10.1021/ja00040a007S. Parsons , D.Sanders, A.Mount, A.Parsons and R.Johnstone, private communication to the CSDG. J. Reiss , private communication to the CSDSaha, S., Hayashi, S., Kobayashi, A., & Hamaguchi, H. (2003). Crystal Structure of 1-Butyl-3-methylimidazolium Chloride. A Clue to the Elucidation of the Ionic Liquid Structure. Chemistry Letters, 32(8), 740-741. doi:10.1246/cl.2003.740Kärkkäinen, J., Asikkala, J., Laitinen, R. S., & Lajunen, M. K. (2004). Effect of Temperature on the Purity of Product in the Preparation of 1-Butyl-3-methylimidazolium-Based Ionic Liquids. Zeitschrift fĂźr Naturforschung B, 59(7), 763-770. doi:10.1515/znb-2004-0704Holbrey, J. D., Reichert, W. M., Nieuwenhuyzen, M., Johnson, S., Seddon, K. R., & Rogers, R. D. (2003). Crystal polymorphism in 1-butyl-3-methylimidazolium halides: supporting ionic liquid formation by inhibition of crystallizationElectronic supplementary information (ESI) available: packing diagrams for I and II; table of closest contacts for I, I-Br and II. See http://www.rsc.org/suppdata/cc/b3/b304543a/. Chemical Communications, (14), 1636. doi:10.1039/b304543aVygodskii, Y. S., Lozinskaya, E. I., Shaplov, A. S., Lyssenko, K. A., Antipin, M. Y., & Urman, Y. G. (2004). Implementation of ionic liquids as activating media for polycondensation processes. Polymer, 45(15), 5031-5045. doi:10.1016/j.polymer.2004.05.025Golovanov, D. G., Lyssenko, K. A., Vygodskii, Y. S., Lozinskaya, E. I., Shaplov, A. S., & Antipin, M. Y. (2006). Crystal structure of 1,3-dialkyldiazolium bromides. Russian Chemical Bulletin, 55(11), 1989-1999. doi:10.1007/s11172-006-0541-3Kawahata, M., Endo, T., Seki, H., Nishikawa, K., & Yamaguchi, K. (2009). Polymorphic Properties of Ionic Liquid of 1-Isopropyl-3-methylimidazolium Bromide. Chemistry Letters, 38(12), 1136-1137. doi:10.1246/cl.2009.1136Ozawa, R., Hayashi, S., Saha, S., Kobayashi, A., & Hamaguchi, H. (2003). Rotational Isomerism and Structure of the 1-Butyl-3-methylimidazolium Cation in the Ionic Liquid State. Chemistry Letters, 32(10), 948-949. doi:10.1246/cl.2003.948Elaiwi, A., Hitchcock, P. B., Seddon, K. R., Srinivasan, N., Tan, Y.-M., Welton, T., & Zora, J. A. (1995). Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids. Journal of the Chemical Society, Dalton Transactions, (21), 3467. doi:10.1039/dt9950003467Wu, T.-Y., Su, S.-G., Lin, K.-F., Lin, Y.-C., Wang, H. P., Lin, M.-W., ⌠Sun, I.-W. (2011). Voltammetric and physicochemical characterization of hydroxyl- and ether-functionalized onium bis(trifluoromethanesulfonyl)imide ionic liquids. Electrochimica Acta, 56(21), 7278-7287. doi:10.1016/j.electacta.2011.06.051Bazito, F. F. C., Kawano, Y., & Torresi, R. M. (2007). Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochimica Acta, 52(23), 6427-6437. doi:10.1016/j.electacta.2007.04.064McFarlane, D. ., Sun, J., Golding, J., Meakin, P., & Forsyth, M. (2000). High conductivity molten salts based on the imide ion. Electrochimica Acta, 45(8-9), 1271-1278. doi:10.1016/s0013-4686(99)00331-xTokuda, H., Tsuzuki, S., Susan, M. A. B. H., Hayamizu, K., & Watanabe, M. (2006). How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. The Journal of Physical Chemistry B, 110(39), 19593-19600. doi:10.1021/jp064159vSalminen, J., Papaiconomou, N., Kumar, R. A., Lee, J.-M., Kerr, J., Newman, J., & Prausnitz, J. M. (2007). Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids. Fluid Phase Equilibria, 261(1-2), 421-426. doi:10.1016/j.fluid.2007.06.031Furlani, M., Albinsson, I., Mellander, B.-E., Appetecchi, G. B., & Passerini, S. (2011). Annealing protocols for pyrrolidinium bis(trifluoromethylsulfonyl)imide type ionic liquids. Electrochimica Acta, 57, 220-227. doi:10.1016/j.electacta.2011.08.056Jin, H., OâHare, B., Dong, J., Arzhantsev, S., Baker, G. A., Wishart, J. F., ⌠Maroncelli, M. (2008). Physical Properties of Ionic Liquids Consisting of the 1-Butyl-3-Methylimidazolium Cation with Various Anions and the Bis(trifluoromethylsulfonyl)imide Anion with Various Cations. The Journal of Physical Chemistry B, 112(1), 81-92. doi:10.1021/jp076462hHeym, F., Etzold, B. J. M., Kern, C., & Jess, A. (2010). An improved method to measure the rate of vaporisation and thermal decomposition of high boiling organic and ionic liquids by thermogravimetrical analysis. Physical Chemistry Chemical Physics, 12(38
Azepanium ionic liquids
The seven-member alicyclic secondary amine, azepane, has been used as starting material to
synthesise a new family of room temperature ionic liquids. Such useful transformations of this
coproduct of diamine production processes, generated in large amounts in the polyamide industry,
would mitigate its disposal, which usually involves combustion. Reaction of azepane with
1-bromoalkanes or 1-bromoalkoxyalkanes produced the corresponding tertiary amines with good
selectivity; further quaternisation reactions with the appropriate methylating agents yielded
quaternary azepanium salts, [Rmazp]X (R = alkyl or alkoxyalkyl; X-
= I
-
, [CF3
CO2
]
-
or [OTf]-
;
Tf = (triÂżuoromethyl)sulfonyl). Analogous [NTf2
]
-
salts have also been produced by metathetic
reactions. Liquid temperature ranges are signiÂżcantly affected by the nature of the anion and the
substituents on the azepanium cation core; for example, [CF3
CO2
]
-
or [OTf]-
salts based on
cations with alkyl substitution are solids, whereas those with alkoxyalkyl substitution are liquids
at ambient temperature. The crystal structures of [C4
mazp][CF3
CO2
], [C4
mazp]I and
[C6
mazp][NTf2
] (C4
= butyl, C6
= hexyl) are reported. The effects of the structural features of
cations and anions on density, viscosity and conductivity data are discussed. The presence of ether
linkages in the cationic side chains causes a marked decrease in viscosities and an increase in
conductivities. Cyclic voltammetry showed that azepanium ionic liquids exhibit extremely wide
electrochemical windows, thus becoming promising and safe alternatives to electrolytes based on
volatile organic compoundsBelhocine, T.; Forsyth, SA.; Gunaratne, HQN.; Nieuwenhuyzen, M.; Nockemann, P.; Vaca Puga, A.; Seddon, KR.... (2011). Azepanium ionic liquids. Green Chemistry. 13(11):3137-3155. doi:10.1039/c1gc15189dS31373155131
New ionic liquids from azepane and 3-methylpiperidine exhibiting wide
New ionic liquids based on azepanium and 3-methylpiperidinium cations have been synthesised; they exhibit moderate viscosities and remarkably wide electrochemical windows, thereby showing promise, inter alia, as electrolytes and battery materials, and as synthetic media.Belhocine, T.; Forsyth, SA.; Gunaratne, HQN.; Nieuwenhuyzen, M.; Vaca Puga, A.; Seddon, KR.; Srinivasan, G.... (2011). New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows. Green Chemistry. 13(1):59-63. doi:10.1039/c0gc00534gS5963131Wilkes, J. S., Levisky, J. A., Wilson, R. A., & Hussey, C. L. (1982). Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry, 21(3), 1263-1264. doi:10.1021/ic00133a078Wilkes, J. S. (2002). A short history of ionic liquidsâfrom molten salts to neoteric solvents. Green Chemistry, 4(2), 73-80. doi:10.1039/b110838gHurley, F. H., & WIer, T. P. (1951). Electrodeposition of Metals from Fused Quaternary Ammonium Salts. Journal of The Electrochemical Society, 98(5), 203. doi:10.1149/1.2778132Hurley, F. H., & WIer, T. P. (1951). The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature. Journal of The Electrochemical Society, 98(5), 207. doi:10.1149/1.2778133H. Ohno (ed.), âIonic Liquids: The Front and Future of Material Developmentâ, CMC Press, Tokyo, 2003H. Ohno (ed.), âElectrochemical Aspects of Ionic Liquidsâ, Wiley-Interscience, Hoboken, 2005GaliĹski, M., Lewandowski, A., & StÄpniak, I. (2006). Ionic liquids as electrolytes. Electrochimica Acta, 51(26), 5567-5580. doi:10.1016/j.electacta.2006.03.016Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8(8), 621-629. doi:10.1038/nmat2448MacFarlane, D. R., Huang, J., & Forsyth, M. (1999). Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature, 402(6763), 792-794. doi:10.1038/45514Buzzeo, M. C., Evans, R. G., & Compton, R. G. (2004). Non-Haloaluminate Room-Temperature Ionic Liquids in ElectrochemistryâA Review. ChemPhysChem, 5(8), 1106-1120. doi:10.1002/cphc.200301017F. Endres, D. MacFarlane and A. Abbott (ed.), âElectrodeposition from Ionic Liquidsâ, Wiley-VCH, Weinheim, 2008D. Teramoto , R.Yokoyama, H.Kagawa, T.Sada and N.Ogata, in âMolten salts and ionic liquids: never the Twain?â ed. M. Gaune-Escard and K. R. Seddon, John Wiley & Sons, Inc., Hoboken, 2010BonhĂ´te, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K., & Grätzel, M. (1996). Hydrophobic, Highly Conductive Ambient-Temperature Molten Saltsâ . Inorganic Chemistry, 35(5), 1168-1178. doi:10.1021/ic951325xBuzzeo, M. C., Hardacre, C., & Compton, R. G. (2006). Extended Electrochemical Windows Made Accessible by Room Temperature Ionic Liquid/Organic Solvent Electrolyte Systems. ChemPhysChem, 7(1), 176-180. doi:10.1002/cphc.200500361MacFarlane, D. R., Meakin, P., Sun, J., Amini, N., & Forsyth, M. (1999). Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases. The Journal of Physical Chemistry B, 103(20), 4164-4170. doi:10.1021/jp984145sSun, J., Forsyth, M., & MacFarlane, D. R. (1998). Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion. The Journal of Physical Chemistry B, 102(44), 8858-8864. doi:10.1021/jp981159pSakaebe, H., & Matsumoto, H. (2003). N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13âTFSI) â novel electrolyte base for Li battery. Electrochemistry Communications, 5(7), 594-598. doi:10.1016/s1388-2481(03)00137-1Alunni, S., & Tijskens, P. (1995). Study on the Effect of the Structure of the Leaving Group in the E1cb Mechanism of Base-Promoted .beta.-Elimination Reactions from N-[2-(p-Nitrophenyl)ethyl]alkylammonium Ions. The Journal of Organic Chemistry, 60(26), 8371-8374. doi:10.1021/jo00131a011Van den Berg, J.-A., & Seddon, K. R. (2003). Critical Evaluation of CâH¡¡¡X Hydrogen Bonding in the Crystalline State. Crystal Growth & Design, 3(5), 643-661. doi:10.1021/cg034083hBondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001G. R. Desiraju , âCrystal Engineering. The Design of Organic Solidsâ, Elsevier, Amsterdam, 1989AakerĂśy, C. B., & Seddon, K. R. (1993). The hydrogen bond and crystal engineering. Chem. Soc. Rev., 22(6), 397-407. doi:10.1039/cs9932200397Zhou, Z.-B., Matsumoto, H., & Tatsumi, K. (2006). Cyclic Quaternary Ammonium Ionic Liquids with Perfluoroalkyltrifluoroborates: Synthesis, Characterization, and Properties. Chemistry - A European Journal, 12(8), 2196-2212. doi:10.1002/chem.200500930Hapiot, P., & Lagrost, C. (2008). Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chemical Reviews, 108(7), 2238-2264. doi:10.1021/cr0680686Xiao, L., & Johnson, K. E. (2003). Electrochemistry of 1-Butyl-3-methyl-1H-imidazolium Tetrafluoroborate Ionic Liquid. Journal of The Electrochemical Society, 150(6), E307. doi:10.1149/1.1568740Zheng, J. P., Pettit, C. M., Goonetilleke, P. C., Zenger, G. M., & Roy, D. (2009). D.C. voltammetry of ionic liquid-based capacitors: Effects of Faradaic reactions, electrolyte resistance and voltage scan speed investigated using an electrode of carbon nanotubes in EMIM-EtSO4. Talanta, 78(3), 1056-1062. doi:10.1016/j.talanta.2009.01.014MacFarlane, D. R., Pringle, J. M., Howlett, P. C., & Forsyth, M. (2010). Ionic liquids and reactions at the electrochemical interface. Physical Chemistry Chemical Physics, 12(8), 1659. doi:10.1039/b923053jHowlett, P. C., Izgorodina, E. I., Forsyth, M., & MacFarlane, D. R. (2006). Electrochemistry at Negative Potentials in Bis(trifluoromethanesulfonyl)amide Ionic Liquids. Zeitschrift fĂźr Physikalische Chemie, 220(10), 1483-1498. doi:10.1524/zpch.2006.220.10.1483Carmichael, A. J., Earle, M. J., Holbrey, J. D., McCormac, P. B., & Seddon, K. R. (1999). The Heck Reaction in Ionic Liquids: A Multiphasic Catalyst System. Organic Letters, 1(7), 997-1000. doi:10.1021/ol9907771Forsyth, S. A., Gunaratne, H. Q. N., Hardacre, C., McKeown, A., Rooney, D. W., & Seddon, K. R. (2005). Utilisation of ionic liquid solvents for the synthesis of Lily-of-the-Valley fragrance {β-LilialÂŽ; 3-(4-t-butylphenyl)-2-methylpropanal}. Journal of Molecular Catalysis A: Chemical, 231(1-2), 61-66. doi:10.1016/j.molcata.2004.12.022Forsyth, S. A., MacFarlane, D. R., Thomson, R. J., & von Itzstein, M. (2002). Rapid, clean, and mild O-acetylation of alcohols and carbohydrates in an ionic liquid. Chemical Communications, (7), 714-715. doi:10.1039/b200306