4 research outputs found

    Hydrogen bond arrangement is shown to differ in coexisting phases of aqueous two-phase systems

    Get PDF
    Analysis by attenuated total reflection-Fourier transform infrared spectroscopy shows that each coexisting phase in aqueous two-phase systems has a different arrangement of hydrogen bonds. Specific arrangements vary for systems formed by different solutes. The hydrogen bond arrangement is shown to correlate with differences in hydrophobic and electrostatic properties of the different phases of five specific systems, four formed by two polymers and one by a single polymer and salt. The results presented here suggest that the arrangement of hydrogen bonds may be an important factor in phase separation.P.P.M. acknowledges University of Aveiro, CICECO-Aveiro Institute of Materials for funding in the framework of the project UIDB/5011/2020 and UIDP/50011/2020, financed by national funds through the FCT/MEC contract foreseen in the numbers 4, 5, and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19.publishe

    Arrangement of Hydrogen Bonds in Aqueous Solutions of Different Globular Proteins

    No full text
    This work presents the first evidence that dissolved globular proteins change the arrangement of hydrogen bonds in water, with different proteins showing quantitatively different effects. Using ATR-FTIR (attenuated total reflection—Fourier transform infrared) spectroscopic analysis of OH-stretch bands, we obtain quantitative estimates of the relative amounts of the previously reported four subpopulations of water structures coexisting in a variety of aqueous solutions. Where solvatochromic dyes can measure the properties of solutions of non-ionic polymers, the results correlate well with ATR-FTIR measurements. In protein solutions to which solvatochromic dye probes cannot be applied, NMR (nuclear magnetic resonance) spectroscopy was used for the first time to estimate the hydrogen bond donor acidity of water. We found strong correlations between the solvent acidity and arrangement of hydrogen bonds in aqueous solutions for several globular proteins. Even quite similar proteins are found to change water properties in dramatically different ways

    Interfacial Tension and Mechanism of Liquid–liquid Phase Separation in Aqueous Media

    No full text
    The organization of multiple subcellular compartments is controlled by liquid–liquid phase separation. Phase separation of this type occurs with the emergence of interfacial tension. Aqueous two-phase systems formed by two non-ionic polymers can be used to separate and analyze biological macromolecules, cells and viruses. Phase separation in these systems may serve as the simple model of phase separation in cells also occurring in aqueous media. To better understand liquid–liquid phase separation mechanisms, interfacial tension was measured in aqueous two-phase systems formed by dextran and polyethylene glycol and by polyethylene glycol and sodium sulfate in the presence of different additives. Interfacial tension values depend on differences between the solvent properties of the coexisting phases, estimated experimentally by parameters representing dipole–dipole, ion–dipole, ion–ion, and hydrogen bonding interactions. Based on both current and literature data, we propose a mechanism for phase separation in aqueous two-phase systems. This mechanism is based on the fundamental role of intermolecular forces. Although it remains to be confirmed, it is possible that these may underlie all liquid–liquid phase separation processes in biology

    Effects of Different Solutes on the Physical Chemical Properties of Aqueous Solutions via Rearrangement of Hydrogen Bonds in Water

    No full text
    The Attenuated Total Reflection – Fourier Transform Infrared (ATR-FTIR) spectra of the OH-stretch band in aqueous solutions of inorganic salts and organic materials; Na2SO4, NaCl, NaClO4, NaSCN, trimethylamine N-oxide, urea, poly(ethylene glycol), polyvinylpyrrolidone, and copolymer of ethylene glycol and propylene glycol (Ucon) were studied at various concentrations. The decomposition of the band into four Gaussian components peaking at 3080, 3230, 3400, and 3550 cm−1 fits every compound examined here with essentially flat residuals. These components were viewed as representing four different subpopulations of water with different H-bond arrangements. The experimentally estimated relative contributions of these components depend on solute type and concentration, and correlate strongly with previously reported experimentally measured solvent features of water such as solvent dipolarity/polarizability, π*, solvent H-bond donor acidity, α, and solvent H-bond acceptor basicity, β. We suggest that water includes an ensemble of four different subpopulations of molecules with various hydrogen bond strengths, geometry, and bond defects depending on the solute. This assumption is obviously oversimplified, but for the wide range of solutes examined here we find that a given solute changes the relative amounts of these subpopulations and hence the above solvent features of water. The solvent features, π* and α, in particular, describe a variety of physicochemical properties, such as water activity, osmotic coefficient, relative viscosity, permittivity, and surface tension, of aqueous solutions of various compounds. It follows therefore that all these physicochemical properties of aqueous solutions are determined by the relative amounts of the above subpopulations of water molecules
    corecore