18 research outputs found
Improved Biocompatible, Flexible Mesh Composites for Implant Applications via Hydroxyapatite Coating with Potential for 3Dimensional Extracellular Matrix Network and Bone Regeneration
[Image: see text] Hydroxyapatite (HA)-coated metals are biocompatible composites, which have potential for various applications for bone replacement and regeneration in the human body. In this study, we proposed the design of biocompatible, flexible composite implants by using a metal mesh as substrate and HA coating as bone regenerative stimulant derived from a simple sol–gel method. Experiments were performed to understand the effect of coating method (dip-coating and drop casting), substrate material (titanium and stainless steel) and substrate mesh characteristics (mesh size, weave pattern) on implant’s performance. HA-coated samples were characterized by X-ray diffractometer, transmission electron microscope, field-emission scanning electron microscope, nanoindenter, polarization and electrochemical impedance spectroscopy, and biocompatibility test. Pure or biphasic nanorod HA coating was obtained on mesh substrates with thicknesses varying from 4.0 to 7.9 μm. Different coating procedures and number of layers did not affect crystal structure, shape, or most intense plane reflections of the HA coating. Moduli of elasticity below 18.5 GPa were reported for HA-coated samples, falling within the range of natural skull bone. Coated samples led to at least 90% cell viability and up to 99.5% extracellular matrix coverage into a 3-dimensional network (16.4% to 76.5% higher than bare substrates). Fluorescent imaging showed no antagonistic effect of the coatings on osteogenic differentiation. Finer mesh size enhanced coating coverage and adhesion, but a low number of HA layers was preferable to maintain open mesh areas promoting extracellular matrix formation. Finally, electrochemical behavior studies revealed that, although corrosion protection for HA-coated samples was generally higher than bare samples, galvanic corrosion occurred on some samples. Overall, the results indicated that while HA-coated titanium grade 1 showed the best performance as a potential implant, HA-coated stainless steel 316 with the finest mesh size constitutes an adequate, lower cost alternative
Low-Cost Resin 3-D Printing for Rapid Prototyping of Microdevices: Opportunities for Supporting Aquatic Germplasm Repositories
Germplasm repositories can benefit sustainable aquaculture by supporting genetic improvement, assisted reproduction, and management of valuable genetic resources. Lack of reliable quality management tools has impeded repository development in the past several decades. Microfabricated open-hardware devices have emerged as a new approach to assist repository development by providing standardized quality assessment capabilities to enable routine quality control. However, prototyping of microfabricated devices (microdevices) traditionally relies on photolithography techniques that are costly, time intensive, and accessible only through specialized engineering laboratories. Although resin 3-D printing has been introduced into the microfabrication domain, existing publications focus on customized or high-cost (>thousands of USD) printers. The goal of this report was to identify and call attention to the emerging opportunities to support innovation in microfabrication by use of low-cost (<USD 350) resin 3-D printing for rapid prototyping. We demonstrate that low-cost mask-based stereolithography (MSLA) 3-D printers with straightforward modifications can provide fabrication quality that approaches traditional photolithography techniques. For example, reliable feature sizes of 20 µm with dimensional discrepancy of <4% for lateral dimensions and <5% for vertical dimensions were fabricated with a consumer-level MSLA printers. In addition, alterations made to pre-processing, post-processing, and printer configuration steps improved print quality as demonstrated in objects with sharper edges and smoother surfaces. The prototyping time and cost of resin 3-D printing (3 h with USD 0.5/prototype) were considerably lower than those of traditional photolithography (5 d with USD 80/prototype). With the rapid advance of consumer-grade printers, resin 3-D printing can revolutionize rapid prototyping approaches for microdevices in the near future, facilitating participation in interdisciplinary development of innovative hardware to support germplasm repository development for aquatic species
Development of a Single-Piece Sperm Counting Chamber (SSCC) for Aquatic Species
Accurate determination of sperm concentration in aquatic species is important for assisted reproduction and cryopreservation, yet is challenging as current counting methods are costly or not suitable for many species. The goal of this work was to develop a simple (single-piece and single-layer photolithography) sperm counting chamber (SSCC) for aquatic species. Goldfish (Carassius auratus) and zebrafish (Danio rerio) sperm were used for evaluation in the device, which was created with soft lithography. Four designs with different geometries were evaluated for counting accuracy. Open-corner and open-midpoint designs were the most accurate with no significant differences (P > 0.05) for most of the target sperm concentrations (0.5–1.0 × 108 cells/mL). The open-corner design was not significantly different from the Makler® counting chamber intended for human sperm cells (P = 0.6) but was significantly different from a hemocytometer (P < 0.001) intended for other cell sizes. Material cost of device production was USD 16 per unit, including photolithography supplies, glass slide and coverslip, and polydimethylsiloxane. The cost can be reduced to USD 2 per unit with repeated wafer casts. This device could be further refined for resin 3-D printing and sharing via open-hardware approaches and modified to best suit species specific applications
Attenuating Fibrotic Markers of Patient-Derived Dermal Fibroblasts by Thiolated Lignin Composites
We report the use of phenolic functional groups of lignosulfonate to impart antioxidant properties and the cell binding domains of gelatin to enhance cell adhesion for poly(ethylene glycol) (PEG)-based scaffolds. Chemoselective thiol-ene chemistry was utilized to form composites with thiolated lignosulfonate (TLS) and methacrylated fish gelatin (fGelMA). Antioxidant properties of TLS were not altered after thiolation and the levels of antioxidation were comparable to those of -ascorbic acid. PEG-fGelMA-TLS composites significantly reduced the difference in , , , and genes between high-scarring and low-scarring hdFBs, providing the potential utility of TLS to attenuate fibrotic responses
Machine-learning-assisted spontaneous Raman spectroscopy classification and feature extraction for the diagnosis of human laryngeal cancer
Germplasm repositories can benefit sustainable aquaculture by supporting genetic improvement, assisted reproduction, and management of valuable genetic resources. Lack of reliable quality management tools has impeded repository development in the past several decades. Microfabricated open-hardware devices have emerged as a new approach to assist repository development by providing standardized quality assessment capabilities to enable routine quality control. However, prototyping of microfabricated devices (microdevices) traditionally relies on photolithography techniques that are costly, time intensive, and accessible only through specialized engineering laboratories. Although resin 3-D printing has been introduced into the microfabrication domain, existing publications focus on customized or high-cost (\u3ethousands of USD) printers. The goal of this report was to identify and call attention to the emerging opportunities to support innovation in microfabrication by use of low-cost
Development of a Single-Piece Sperm Counting Chamber (SSCC) for Aquatic Species
Accurate determination of sperm concentration in aquatic species is important for assisted reproduction and cryopreservation, yet is challenging as current counting methods are costly or not suitable for many species. The goal of this work was to develop a simple (single-piece and single-layer photolithography) sperm counting chamber (SSCC) for aquatic species. Goldfish ( and zebrafish () sperm were used for evaluation in the device, which was created with soft lithography. Four designs with different geometries were evaluated for counting accuracy. Open-corner and open-midpoint designs were the most accurate with no significant differences ( \u3e 0.05) for most of the target sperm concentrations (0.5-1.0 × 10 cells/mL). The open-corner design was not significantly different from the Makler counting chamber intended for human sperm cells ( = 0.6) but was significantly different from a hemocytometer ( \u3c 0.001) intended for other cell sizes. Material cost of device production was USD 16 per unit, including photolithography supplies, glass slide and coverslip, and polydimethylsiloxane. The cost can be reduced to USD 2 per unit with repeated wafer casts. This device could be further refined for resin 3-D printing and sharing via open-hardware approaches and modified to best suit species specific applications
Engineering Breast Cancer Microenvironments and 3D Bioprinting
The extracellular matrix (ECM) is a critical cue to direct tumorigenesis and metastasis. Although two-dimensional (2D) culture models have been widely employed to understand breast cancer microenvironments over the past several decades, the 2D models still exhibit limited success. Overwhelming evidence supports that three dimensional (3D), physiologically relevant culture models are required to better understand cancer progression and develop more effective treatment. Such platforms should include cancer-specific architectures, relevant physicochemical signals, stromal–cancer cell interactions, immune components, vascular components, and cell-ECM interactions found in patient tumors. This review briefly summarizes how cancer microenvironments (stromal component, cell-ECM interactions, and molecular modulators) are defined and what emerging technologies (perfusable scaffold, tumor stiffness, supporting cells within tumors and complex patterning) can be utilized to better mimic native-like breast cancer microenvironments. Furthermore, this review emphasizes biophysical properties that differ between primary tumor ECM and tissue sites of metastatic lesions with a focus on matrix modulation of cancer stem cells, providing a rationale for investigation of underexplored ECM proteins that could alter patient prognosis. To engineer breast cancer microenvironments, we categorized technologies into two groups: (1) biochemical factors modulating breast cancer cell-ECM interactions and (2) 3D bioprinting methods and its applications to model breast cancer microenvironments. Biochemical factors include matrix-associated proteins, soluble factors, ECMs, and synthetic biomaterials. For the application of 3D bioprinting, we discuss the transition of 2D patterning to 3D scaffolding with various bioprinting technologies to implement biophysical cues to model breast cancer microenvironments