32 research outputs found

    Pathway Analysis of Differentially Expressed Genes in Patients with Acute Aortic Dissection

    Get PDF
    Background: Acute aortic dissection (AAD) is a life-threatening condition with high mortality and a relatively unclarified pathophysiological mechanism. Although differentially expressed genes in AAD have been recognized, interactions between these genes remain poorly defined. This study was conducted to gain a better understanding of the molecular mechanisms underlying AAD and to support the future development of a clinical test for monitoring patients at high risk. Materials and Methods: Aortic tissue was collected from 19 patients with AAD (mean age 61.7 ± 13.1 years), and from eight other patients (mean age 32.9 ± 12.2 years) who carried the mutated gene for Marfan syndrome (MS). Six patients (mean age 56.7 ± 12.3 years) served as the control group. The PIQOR TM Immunology microarray with 1076 probes in quadruplicates was utilized; the differentially expressed genes were analysed in a MedScan search using PathwayAssist software. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and protein analysis were performed. Results: Interactions of MS fibrillin-1 (FBN1) in the MedScan pathway analysis showed four genes, fi bulin-1 (FBLN1), fi bulin-2 (FBLN2), decorin (DCN) and microfi brillar associated protein 5 (MFAP5), which were differentially expressed in all tissue from AAD. The validation of these genes by qRT-PCR revealed a minimum of three-fold downregulation of FBLN1 (0.5 ± 0.4 vs. 6.1 ± 2.3 fold, p = 0.003) and of DCN (2.5 ± 1.0 vs. 8.5 ± 4.7 fold, p = 0.04) in AAD compared to MS and control samples. Conclusions: Downregulation of fibrillin-1 (FBN1) may weaken extracellular components in the aorta and/or interfer with the transmission of cellular signals and eventually cause AAD. Additional research on these four identified genes can be a starting point to develop a diagnostic tool

    The Two Stem Cell MicroRNA Gene Clusters C19MC and miR-371-3 Are Activated by Specific Chromosomal Rearrangements in a Subgroup of Thyroid Adenomas

    Get PDF
    Thyroid adenomas are common benign human tumors with a high prevalence of about 5% of the adult population even in iodine sufficient areas. Rearrangements of chromosomal band 19q13.4 represent a frequent clonal cytogenetic deviation in these tumors making them the most frequent non-random chromosomal translocations in human epithelial tumors at all. Two microRNA (miRNA) gene clusters i.e. C19MC and miR-371-3 are located in close proximity to the breakpoint region of these chromosomal rearrangements and have been checked for a possible up-regulation due to the genomic alteration. In 4/5 cell lines established from thyroid adenomas with 19q13.4 rearrangements and 5/5 primary adenomas with that type of rearrangement both the C19MC and miR-371-3 cluster were found to be significantly overexpressed compared to controls lacking that particular chromosome abnormality. In the remaining cell line qRT-PCR revealed overexpression of members of the miR-371-3 cluster only which might be due to a deletion accompanying the chromosomal rearrangement in that case. In depth molecular characterization of the breakpoint in a cell line from one adenoma of this type reveals the existence of large Pol-II mRNA fragments as the most likely source of up-regulation of the C19MC cluster. The up-regulation of the clusters is likely to be causally associated with the pathogenesis of the corresponding tumors. Of note, the expression of miRNAs miR-520c and miR-373 is known to characterize stem cells and in terms of molecular oncology has been implicated in invasive growth of epithelial cells in vitro and in vivo thus allowing to delineate a distinct molecular subtype of thyroid adenomas. Besides thyroid adenomas rearrangements of 19q13.4 are frequently found in other human neoplasias as well, suggesting that activation of both clusters might be a more general phenomenon in human neoplasias

    Lung Surfactant Accelerates Skin Wound Healing : A Translational Study with a Randomized Clinical Phase I Study

    Get PDF
    Lung surfactants are used for reducing alveolar surface tension in preterm infants to ease breathing. Phospholipid films with surfactant proteins regulate the activity of alveolar macrophages and reduce inflammation. Aberrant skin wound healing is characterized by persistent inflammation. The aim of the study was to investigate if lung surfactant can promote wound healing. Preclinical wound models, e.g. cell scratch assays and full-thickness excisional wounds in mice, and a randomized, phase I clinical trial in healthy human volunteers using a suction blister model were used to study the effect of the commercially available bovine lung surfactant on skin wound repair. Lung surfactant increased migration of keratinocytes in a concentration-dependent manner with no effect on fibroblasts. Significantly reduced expression levels were found for pro-inflammatory and pro-fibrotic genes in murine wounds. Because of these beneficial effects in preclinical experiments, a clinical phase I study was initiated to monitor safety and tolerability of surfactant when applied topically onto human wounds and normal skin. No adverse effects were observed. Subepidermal wounds healed significantly faster with surfactant compared to control. Our study provides lung surfactant as a strong candidate for innovative treatment of chronic skin wounds and as additive for treatment of burn wounds to reduce inflammation and prevent excessive scarring. © 2020, The Author(s)

    Decrease in thyroid adenoma associated (THADA) expression is a marker of dedifferentiation of thyroid tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Thyroid adenoma associated (THADA) </it>has been identified as the target gene affected by chromosome 2p21 translocations in thyroid adenomas, but the role of THADA in the thyroid is still elusive. The aim of this study was to quantify <it>THADA </it>gene expression in normal tissues and in thyroid hyper- and neoplasias, using real-time PCR.</p> <p>Methods</p> <p>For the analysis <it>THADA </it>and 18S rRNA gene expression assays were performed on 34 normal tissue samples, including thyroid, salivary gland, heart, endometrium, myometrium, lung, blood, and adipose tissue as well as on 85 thyroid hyper- and neoplasias, including three adenomas with a 2p21 translocation. In addition, <it>NIS </it>(<it>sodium-iodide symporter</it>) gene expression was measured on 34 of the pathological thyroid samples.</p> <p>Results</p> <p>Results illustrated that <it>THADA </it>expression in normal thyroid tissue was significantly higher (<it>p </it>< 0.0001, exact Wilcoxon test) than in the other tissues. Significant differences were also found between non-malignant pathological thyroid samples (goiters and adenomas) and malignant tumors (<it>p </it>< 0.001, Wilcoxon test, t approximation), anaplastic carcinomas (ATCs) and all other samples and also between ATCs and all other malignant tumors (<it>p </it>< 0.05, Wilcoxon test, t approximation). Furthermore, in thyroid tumors <it>THADA </it>mRNA expression was found to be inversely correlated with <it>HMGA2 </it>mRNA. <it>HMGA2 </it>expression was recently identified as a marker revealing malignant transformation of thyroid follicular tumors. A correlation between <it>THADA </it>and <it>NIS </it>has also been found in thyroid normal tissue and malignant tumors.</p> <p>Conclusions</p> <p>The results suggest <it>THADA </it>being a marker of dedifferentiation of thyroid tissue.</p

    Fibroid explants reveal a higher sensitivity against MDM2-inhibitor nutlin-3 than matching myometrium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spontaneous cessation of growth is a frequent finding in uterine fibroids. Increasing evidence suggests an important role of cellular senescence in this growth control. Deciphering the underlying mechanisms of growth control that can be expected not only to shed light on the biology of the tumors but also to identify novel therapeutic targets.</p> <p>Methods</p> <p>We have analyzed uterine leiomyomas and matching normal tissue for the expression of p14<sup>Arf </sup>and used explants to see if reducing the MDM2 activity using the small-molecule inhibitor nutlin-3 can induce p53 and activate genes involved in senescence and/or apoptosis. For these studies quantitative real-time RT-PCR, Western blots, and immunohistochemistry were used. Statistical analyses were performed using the student's <it>t </it>test.</p> <p>Results</p> <p>An in depth analysis of 52 fibroids along with matching myometrium from 31 patients revealed in almost all cases a higher expression of p14<sup>Arf </sup>in the tumors than in the matching normal tissue. In tissue explants, treatment with the MDM2 inhibitor nutlin-3 induced apoptosis as well as senescence as revealed by a dose-dependent increase of the expression of <it>BAX </it>as well as of <it>p21</it>, respectively. Simultaneously, the expression of the proliferation marker Ki-67 drastically decreased. Western-blot analysis identified an increase of the p53 level as the most likely reason for the increased activity of its downstream markers <it>BAX </it>and <it>p21</it>. Because as a rule fibroids express much higher levels of p14<sup>Arf</sup>, a major negative regulator of MDM2, than matching myometrium it was then analyzed if fibroids are more sensitive against nutlin-3 treatment than matching myometrium. We were able to show that in most fibroids analyzed a higher sensibility than that of matching myometrium was noted with a corresponding increase of the p53 immunopositivity of the fibroid samples compared to those from myometrium.</p> <p>Conclusions</p> <p>The results show that uterine fibroids represent a cell population of advanced cellular age compared to matching myometrium. Moreover, the data point to members of the p53-network as to potential novel therapeutic targets for the treatment of uterine fibroids.</p

    Non-Coding microRNAs as Novel Potential Tumor Markers in Testicular Cancer

    Get PDF
    Testicular cancer is an important disease with increasing incidence and a high burden of morbidity and mortality in young men worldwide. Histological examination of the testicular tissue after orchiectomy plays an important role alongside patient history, imaging, clinical presentation and laboratory parameters. Surgical procedures and chemotherapeutic treatment provide a high chance of cure in early stages, though some patients in advanced stages belonging to a poor risk group experience cancer-related death. Though conventional serum-based tumor markers, including α-fetoprotein (AFP), the β-subunit of human chorionic gonadotropin (β-hCG), and lactate dehydrogenase (LDH), are useful as prognostic and diagnostic biomarkers, unfortunately, these tumor markers only have a sensitivity of about 60%, and in pure seminoma even lower with about 20%. Therefore, the development of new tumor markers is an important and intensively ongoing issue. The analysis of epigenetic modification and non-coding RNA microRNAs (miRNAs) are carrying most promising potential as tumor markers in future. miRNAs are small RNAs secreted by testicular tumor cells and circulate and be measurable in body fluids. In recent years, miRNAs of the miR-371-373 cluster in particular have been identified as potentially superior tumor markers in testicular cancer patients. Studies showed that miR-371a-3p and miR-302/367 expression significantly differ between testicular tumors and healthy testicular tissue. Several studies including high prospective multi-center trials clearly demonstrated that these miRNAs significantly exceed the sensitivity and specificity of conventional tumor markers and may help to facilitate the diagnosis, follow-up, and early detection of recurrences in testicular cancer patients. In addition, other miRNAs such as miR-223-3p, miR-449, miR-383, miR-514a-3p, miR-199a-3p, and miR-214 will be discussed in this review. However, further studies are needed to identify the value of these novel markers in additional clinical scenarios, including the monitoring in active surveillance or after adjuvant chemotherapy, but also to show the limitations of these tumor markers. The aim of this review is to give an overview on the current knowledge regarding the relevance of non-coding miRNAs as biomarkers in testicular cancer

    Non-Coding microRNAs as Novel Potential Tumor Markers in Testicular Cancer

    No full text
    Testicular cancer is an important disease with increasing incidence and a high burden of morbidity and mortality in young men worldwide. Histological examination of the testicular tissue after orchiectomy plays an important role alongside patient history, imaging, clinical presentation and laboratory parameters. Surgical procedures and chemotherapeutic treatment provide a high chance of cure in early stages, though some patients in advanced stages belonging to a poor risk group experience cancer-related death. Though conventional serum-based tumor markers, including &alpha;-fetoprotein (AFP), the &beta;-subunit of human chorionic gonadotropin (&beta;-hCG), and lactate dehydrogenase (LDH), are useful as prognostic and diagnostic biomarkers, unfortunately, these tumor markers only have a sensitivity of about 60%, and in pure seminoma even lower with about 20%. Therefore, the development of new tumor markers is an important and intensively ongoing issue. The analysis of epigenetic modification and non-coding RNA microRNAs (miRNAs) are carrying most promising potential as tumor markers in future. miRNAs are small RNAs secreted by testicular tumor cells and circulate and be measurable in body fluids. In recent years, miRNAs of the miR-371-373 cluster in particular have been identified as potentially superior tumor markers in testicular cancer patients. Studies showed that miR-371a-3p and miR-302/367 expression significantly differ between testicular tumors and healthy testicular tissue. Several studies including high prospective multi-center trials clearly demonstrated that these miRNAs significantly exceed the sensitivity and specificity of conventional tumor markers and may help to facilitate the diagnosis, follow-up, and early detection of recurrences in testicular cancer patients. In addition, other miRNAs such as miR-223-3p, miR-449, miR-383, miR-514a-3p, miR-199a-3p, and miR-214 will be discussed in this review. However, further studies are needed to identify the value of these novel markers in additional clinical scenarios, including the monitoring in active surveillance or after adjuvant chemotherapy, but also to show the limitations of these tumor markers. The aim of this review is to give an overview on the current knowledge regarding the relevance of non-coding miRNAs as biomarkers in testicular cancer

    Testicular Neoplasms: Primary Tumour Size Is Closely Interrelated with Histology, Clinical Staging, and Tumour Marker Expression Rates—A Comprehensive Statistical Analysis

    No full text
    The role of primary tumour size (TS) in the clinical course of testicular tumours is incompletely understood. We retrospectively evaluated 641 consecutive patients with testicular neoplasms with regard to TS, histology, clinical stage (CS), serum tumour marker (STM) expression and patient age using descriptive statistical methods. TS ≤ 10 mm was encountered in 13.6% of cases. Median TS of 10 mm, 30 mm, 35 mm, and 53 mm were found in benign tumours, seminomas, nonseminomas, and other malignant tumours, respectively. In cases with TS ≤ 10 mm, 50.6% had benign tumours. Upon receiver operating characteristics analysis, TS of > 16 mm revealed 81.5% sensitivity and 81.0% specificity for detecting malignancy. In subcentimeter germ cell tumours (GCTs), 97.7% of cases had CS1, and CS1 frequency dropped with increasing TS. Expression rates of all STMs significantly increased with TS. MicroRNA-371a-3p (M371) serum levels had higher expression rates than classical STMs, with a rate of 44.1% in subcentimeter GCTs. In all, TS is a biologically relevant factor owing to its significant associations with CS, STM expression rates and histology. Importantly, 50% of subcentimeter testicular neoplasms are of benign nature, and M371 outperforms the classical markers even in subcentimeter tumours
    corecore