61 research outputs found

    Torque magnetometry studies of new low temperature metamagnetic states in ErNi_{2}B_{2}C

    Full text link
    The metamagnetic transitions in single-crystal ErNi2_2B2_2C have been studied at 1.9 K with a Quantum Design torque magnetometer. The critical fields of the transitions depend crucially on the angle between applied field and the easy axis [100]. Torque measurements have been made while changing angular direction of the magnetic field (parallel to basal tetragonal abab-planes) in a wide angular range (more than two quadrants). Sequences of metamagnetic transitions with increasing field are found to be different for the magnetic field along (or close enough to) the easy [100] axis from that near the hard [110] axis. The study have revealed new metamagnetic states in ErNi2_{2}B2_2C which were not apparent in previous longitudinal-magnetization and neutron studies.Comment: 3 pages (4 figs. incl.) reported at 52th Magnetism and Magnetic Materials Conference, Tampa, Florida, USA, November 200

    Non-linear effects in hopping conduction of single-crystal La_{2}CuO_{4 + \delta}

    Full text link
    The unusual non-linear effects in hopping conduction of single-crystal La_{2}CuO_{4 + \delta} with excess oxygen has been observed. The resistance is measured as a function of applied voltage U (10^{-3} V - 25 V) in the temperature range 5 K 0.1 V) the conduction of sample investigated corresponds well to Mott's variable-range hopping (VRH). An unusual conduction behavior is found, however, in low voltage range (approximately below 0.1 V), where the influence of electric field and (or) electron heating effect on VRH ought to be neglected. Here we have observed strong increase in resistance at increasing U at T < 20 K, whereas at T > 20 K the resistance decreases with increasing U. The magnetoresistance of the sample below 20 K has been positive at low voltage and negative at high voltage. The observed non-Ohmic behavior is attributable to inhomogeneity of the sample, and namely, to the enrichment of sample surface with oxygen during the course of the heat treatment of the sample in helium and air atmosphere before measurements. At low enough temperature (below 20 K) the surface layer with increased oxygen concentration is presumed to consist of disconnected superconducting regions (with T_{c} about 20 K) in poor-conducting matrix. The results obtained demonstrate that transport properties of cuprate oxides may be determined in essential degree by structural or stoichimetric inhomogeneities. This should be taken into account at evaluation of "quality" of high-temperature superconductors on the basis of transport properties measurements.Comment: 12 pages, REVTex, 11 Postscript figures, To be published in Fizika Nizkikh Temperatur (published by AIP as Low Temperature Physics

    Magnetoresistive study of antiferromagnetic--weak ferromagnetic transition in single-crystal La2_{2}CuO4+δ_{4+\delta}

    Full text link
    The resistive measurements were made to study the magnetic field-induced antiferromagnetic (AF) - weak ferromagnetic (WF) transition in La2_2CuO4_4 single-crystal. The magnetic field (DC or pulsed) was applied normally to the CuO2_2 layers. The transition manifested itself in a drastic decrease of the resistance in critical fields of ~5-7 T. The study is the first to display the effect of the AF -WF transition on the conductivity of the La2_2CuO4_4 single-crystal in the parallel - to - CuO2_2 layers direction. The results provide support for the 3-dimensional nature of the hopping conduction of this layered oxide.Comment: 8 pages, 7 figures, RevTe

    Transport, thermal and magnetic properties of RuSr_2(Gd_{1.5}Ce_{0.5})Cu_2O_{10-\delta}, a magnetic superconductor

    Full text link
    Resistivity, thermoelectric power, heat capacity and magnetization for samples of RuSr_2(Gd_{1.5}Ce_{0.5})Cu_{2}O_{10-\delta} were investigated in the temperature range 1.8-300 K with a magnetic field up to 8 T. The resistive transitions to the superconducting state are found to be determined by the inhomogeneous (granular) structure, characterized by the intragranular, T_{c0}, and intergranular, T_{cg}, transition temperatures. Heat capacity, C(T), shows a jump at the superconducting transition temperature T_{c0}\approx 37.5 K. A Schottky-like anomaly is found in C(T) below 20 K. This low temperature anomaly can be attributed to splitting of the ground term 8S7/2^{8}S_{7/2} of paramagnetic Gd^{3+} ions by internal and external magnetic fields.Comment: 3 pages (4 figs. incl.), reported at 50th Magnetism and Magnetic Materials Conference, San Jose, CA, USA, 200

    Weak Localization Effect in Superconductors

    Full text link
    We study the effect of weak localization on the transition temperatures of superconductors using time-reversed scattered state pairs, and find that the weak localization effect weakens electron-phonon interactions. With solving the BCS TcT_{c} equation, the calculated values for TcT_c are in good agreement with experimental data for various two- and three-dimensional disordered superconductors. We also find that the critical sheet resistance for the suppression of superconductivity in thin films does not satisfy the universal behavior but depends on sample, in good agreement with experiments. but depends on sample, in good agreement with experiments.Comment: 14 pages, Revtex, 5 ps figure

    Characteristic crossing point (T2.7T_{\ast}\approx 2.7 K) in specific-heat curves of samples RuSr2_2Gd1.5_{1.5}Ce0.5_{0.5}Cu2_2O10δ_{10-\delta} taken for different values of magnetic field

    Full text link
    Magnetic properties of polycrystalline samples of RuSr2_2(Gd1.5_{1.5}Ce0.5_{0.5})Cu2_{2}O10δ_{10-\delta}, as-prepared (by solid-state reaction) and annealed (12 hours at 845^{\circ}C) in pure oxygen at different pressure (30, 62 and 78 atm) are presented. Specific heat and magnetization were investigated in the temperature range 1.8--300 K with a magnetic field up to 8 T. Specific heat, C(T)C(T), shows a jump at the superconducting transition (with onset at T37.5T\approx 37.5 K). Below 20 K, a Schottky-type anomaly becomes apparent in C(T)C(T). This low-temperature anomaly can be attributed to splitting of the ground term 8S7/2{^8}S_{7/2} of paramagnetic Gd3+^{3+} ions by internal and external magnetic fields. It is found that curves C(T)C(T) taken for different values of magnetic field have the same crossing point (at T2.7T_{\ast}\approx 2.7 K) for all samples studied. At the same time, C(H)C(H) curves taken for different temperatures have a crossing point at a characteristic field H3.7H_{\ast}\approx 3.7 T. These effects can be considered as manifestation of the crossing-point phenomenon which is supposed to be inherent for strongly correlated electron systems.Comment: 10 pages, 7 figures, submitted to J. Phys.: Condens. Matte

    Resistive and magnetoresistive properties of CrO2 pressed powders with different types of inter-granular dielectric layers

    Full text link
    Resistive, magnetoresistive and magnetic properties of four kinds of pressed CrO2 powders, synthesized by hydrothermal method of chromic anhydride have been investigated. The particles in powders constituted of rounded particles (diameter 120 nm) or needle-shaped crystals with an average diameter of 22.9 nm and average length of 302 nm. All of the particles had a surface dielectric shell of varying thickness and different types (such as oxyhydroxide -CrOOH or chromium oxide Cr2O3). For all the samples at low temperatures we found non-metallic temperature dependence of resistivity and giant negative magnetoresistance (MR). The maximum value of MR at low temperatures (T \approx 5 K) is \approx 37% in relatively small fields (0.5 T). At higher temperatures there was a rapid decrease of MR (up to \approx 1% / T at T \approx 200 K). The main objective of this work was studying the influence of properties and thickness of the intergranular dielectric layers, as well as CrO2 particle shape, on the magnitude of the tunneling resistance and MR of the pressed powder. The new results obtained in this study include: (1) detection at low temperatures in powders with needle-like particles a new type of MR hysteresis, and nonmonotonic MR behaviour with increasing magnetic field (absolute value of the MR at first grows rather rapidly with the field, and then begins diminishing markedly, forming a maximum), and (2) detection of non-monotonic temperature dependence, where - a field in which the resistance in a magnetic field has a maximum, as well as finding discrepancies in values of and coercivity fields, (3) detection of the anisotropy of MR, depending on the relative orientation of the transport current and the magnetic field, (4) a new method of synthesis, to regulate the thickness of dielectric coating.Comment: 19 pages, 8 figure

    Percolation model for the superconductor-insulator transition in granular films

    Full text link
    We study the temperature dependence of the superconductor-insulator transition in granular superconductors. Empirically, these systems are characterized by very broad resistance tails, which depend exponentially on the temperature, and the normal state resistance. We model these systems by a two-dimensional random resistor percolation networks in which the resistance between two grains is governed either by Josephson junction coupling or by quasi particle tunneling. Our numerical simulations as well as an effective medium evaluation explain the experimental results over a wide range of temperatures and resistances. Using effective medium approximation we find an analytical expression for the effective resistance of the system and the value of the critical resistance separating conducting from insulating branches.Comment: 4 pages, 2 figure

    Critical properties of two-dimensional Josephson junction arrays with zero-point quantum fluctuations

    Full text link
    We present results from an extensive analytic and numerical study of a two-dimensional model of a square array of ultrasmall Josephson junctions. We include the ultrasmall self and mutual capacitances of the junctions, for the same parameter ranges as those produced in the experiments. The model Hamiltonian studied includes the Josephson, EJE_J, as well as the charging, ECE_C, energies between superconducting islands. The corresponding quantum partition function is expressed in different calculationally convenient ways within its path-integral representation. The phase diagram is analytically studied using a WKB renormalization group (WKB-RG) plus a self-consistent harmonic approximation (SCHA) analysis, together with non-perturbative quantum Monte Carlo simulations. Most of the results presented here pertain to the superconductor to normal (S-N) region, although some results for the insulating to normal (I-N) region are also included. We find very good agreement between the WKB-RG and QMC results when compared to the experimental data. To fit the data, we only used the experimentally determined capacitances as fitting parameters. The WKB-RG analysis in the S-N region predicts a low temperature instability i.e. a Quantum Induced Transition (QUIT). We carefully simulations and carry out a finite size analysis of TQUITT_{QUIT} as a function of the magnitude of imaginary time axis LτL_\tau. We find that for some relatively large values of α=EC/EJ\alpha=E_C/E_J (1α2.25)1\leq \alpha \leq 2.25), the LτL_\tau\to\infty limit does appear to give a {\it non-zero} TQUITT_{QUIT}, while for α2.5\alpha \ge 2.5, TQUIT=0T_{QUIT}=0. We use the SCHA to analytically understand the LτL_\tau dependence of the QMC results with good agreement between them. Finally, we also carried out a WKB-RG analysis in the I-N region and found no evidence of a low temperature QUIT, up to lowest order in α1{\alpha}^{-1}Comment: 39 pages, 18 postscript figures, to appear in Phys. Rev.

    Популяционная перестройка Т-лимфоцитов, содержащих хемокиновые рецепторы, у пациентов с хронической обструктивной болезнью легких

    Get PDF
    Summary. Chronic obstructive pulmonary disease (COPD) is a difficult-to-treat progressive disease. About 14.7–68.6 % of COPD cases are not related to smoking. We examined 21 nonsmokers with COPD, 20 smokers with COPD, 20 healthy nonsmokers and 21 healthy smokers. Relative number of peripheral blood T-lymphocytes containing CCR5 and CXCR3 chemokine receptors was determined by flow cytometry. CXCR3+ and CCR5+ T-cell per cent number was increased in non-smokers with COPD compared with healthy non-smokers. A higher proportion of T-cells containing CCR5 and CXCR3 receptors on the cell surface was also observed in blood of smokers with COPD compared both to healthy smokers and nonsmokers. Our findings suggest similar mechanism of T-cells migration from blood into the airways both in non-smoking and smoking patients.Резюме. Хроническая обструктивная болезнь легких (ХОБЛ) – прогрессирующее заболевание, которое плохо поддается лечению. От 14,7 до 68,6 % случаев ХОБЛ не связаны с курением. Методом проточной цитометрии определено относительное количество Т-лимфоцитов крови, содержащих хемокиновые рецепторы CXCR3 и CCR5. Были обследованы 21 некурящий пациент с ХОБЛ, 20 курящих больных ХОБЛ, 20 здоровых некурящих людей и 21 здоровый курильщик. У некурящих пациентов с ХОБЛ наблюдалось увеличение процента CXCR3+ и CCR5+ Т-лимфоцитов по сравнению со здоровыми некурящими людьми. Установлено также повышение доли Т-клеток, содержащих на своей поверхности рецепторы ССR5 и CXCR3, в общей популяции лимфоцитов крови у курящих пациентов с ХОБЛ по сравнению со здоровыми курящими и некурящими людьми. Результаты исследования свидетельствуют о схожем механизме миграции Т-клеток из кровотока в дыхательные пути у некурящих и курящих пациентов
    corecore