6 research outputs found

    Significance of plasma transforming growth factor-beta levels in radiotherapy for non-small-cell lung cancer

    No full text
    Purpose: In dose-escalation studies of radiotherapy (RT) for non-small-cell lung cancer (NSCLC), radiation pneumonitis (RP) is the most important dose-limiting complication. Transforming growth factor-beta1 (TGF-beta1) has been reported to be associated with the incidence of RP. It has been proposed that serial measurements of plasma TGF-beta1 can be valuable to estimate the risk of RP and to decide whether additional dose-escalation can be safely applied. The aim of this study was to evaluate prospectively the time course of TGF-beta1 levels in patients irradiated for NSCLC in relation to the development of RP and dose-volume parameters. Methods and Materials: Plasma samples were obtained in 68 patients irradiated for medically inoperable or locally advanced NSCL (dose range, 60.8-94.5 Gy) before and 4, 6, and 18 weeks after the start of RT. Plasma TGF-beta1 levels were determined using a bioassay on the basis of TGF-beta1-induced plasminogen activator inhibitor-1 expression in mink lung cells. All patients underwent chest computed tomography scans before RT that were repeated at 18 weeks after RT. The computed tomography data were used to calculate the mean lung dose (MLD) and to score the radiation-induced radiologic changes. RP was defined on the basis of the presence of either radiographic changes or clinical symptoms. Symptomatic RP was scored according to the Common Toxicity Criteria (Grade 1 or worse) and the Southwestern Oncology Group criteria (Grade 2 or worse). Multivariate analyses were performed to investigate which factors (pre- or posttreatment TGF-beta1 level, MLD) were associated with the incidence of RP. To improve our understanding of the time course of TGF-beta1 levels, we performed a multivariate analysis to investigate which factors (pre-RT TGF-beta1 level, MLD, RP) were independently associated with the posttreatment TGF-beta1 levels. Results: The pre-RT TGF-beta1 levels were increased in patients with NSCLC (median 21 ng/mL, range, 5-103 ng/mL) compared with healthy individuals (range, 4-12 ng/mL). On average, the TGF-beta1 levels normalized toward the end of treatment and remained stable until 18 weeks after RT. In 29 patients, however, TGF-beta1 was increased at the end of RT with respect to the pre-RT value. The multivariate analyses revealed that the MLD was the only variable that correlated significantly with the risk of both radiographic RP (p = 0.05) and symptomatic RP, independent of the scoring system used (p = 0.05 and 0.03 for Southwestern Oncology Group and Common Toxicity Criteria systems, respectively). The TGF-beta1 level at the end of RT was significantly associated with the MLD (p <0.001) and pre-RT TGF-beta1 level (p = 0.001). Conclusion: The MLD correlated significantly with the incidence of both radiographic and symptomatic RP. The results of our study did not confirm the reports that increased levels of TGF-beta1 at the end of RT are an independent additional risk factor for developing symptomatic RP. However, the TGF-beta1 level at the end of a RT was significantly associated with the MLD and the pre-RT level. (C) 2004 Elsevier Inc

    Significance of plasma transforming growth factor-beta levels in radiotherapy for non-small-cell lung cancer

    No full text
    Purpose: In dose-escalation studies of radiotherapy (RT) for non-small-cell lung cancer (NSCLC), radiation pneumonitis (RP) is the most important dose-limiting complication. Transforming growth factor-beta1 (TGF-beta1) has been reported to be associated with the incidence of RP. It has been proposed that serial measurements of plasma TGF-beta1 can be valuable to estimate the risk of RP and to decide whether additional dose-escalation can be safely applied. The aim of this study was to evaluate prospectively the time course of TGF-beta1 levels in patients irradiated for NSCLC in relation to the development of RP and dose-volume parameters.Methods and Materials: Plasma samples were obtained in 68 patients irradiated for medically inoperable or locally advanced NSCL (dose range, 60.8-94.5 Gy) before and 4, 6, and 18 weeks after the start of RT. Plasma TGF-beta1 levels were determined using a bioassay on the basis of TGF-beta1-induced plasminogen activator inhibitor-1 expression in mink lung cells. All patients underwent chest computed tomography scans before RT that were repeated at 18 weeks after RT. The computed tomography data were used to calculate the mean lung dose (MLD) and to score the radiation-induced radiologic changes. RP was defined on the basis of the presence of either radiographic changes or clinical symptoms. Symptomatic RP was scored according to the Common Toxicity Criteria (Grade 1 or worse) and the Southwestern Oncology Group criteria (Grade 2 or worse). Multivariate analyses were performed to investigate which factors (pre- or posttreatment TGF-beta1 level, MLD) were associated with the incidence of RP. To improve our understanding of the time course of TGF-beta1 levels, we performed a multivariate analysis to investigate which factors (pre-RT TGF-beta1 level, MLD, RP) were independently associated with the posttreatment TGF-beta1 levels.Results: The pre-RT TGF-beta1 levels were increased in patients with NSCLC (median 21 ng/mL, range, 5-103 ng/mL) compared with healthy individuals (range, 4-12 ng/mL). On average, the TGF-beta1 levels normalized toward the end of treatment and remained stable until 18 weeks after RT. In 29 patients, however, TGF-beta1 was increased at the end of RT with respect to the pre-RT value. The multivariate analyses revealed that the MLD was the only variable that correlated significantly with the risk of both radiographic RP (p = 0.05) and symptomatic RP, independent of the scoring system used (p = 0.05 and 0.03 for Southwestern Oncology Group and Common Toxicity Criteria systems, respectively). The TGF-beta1 level at the end of RT was significantly associated with the MLD (p &lt;0.001) and pre-RT TGF-beta1 level (p = 0.001).Conclusion: The MLD correlated significantly with the incidence of both radiographic and symptomatic RP. The results of our study did not confirm the reports that increased levels of TGF-beta1 at the end of RT are an independent additional risk factor for developing symptomatic RP. However, the TGF-beta1 level at the end of a RT was significantly associated with the MLD and the pre-RT level. (C) 2004 Elsevier Inc.</p

    Comparing different NTCP models that predict the incidence of radiation pneumonitis

    No full text
    Purpose: To compare different normal tissue complication probability (NTCP) models to predict the incidence of radiation pneumonitis on the basis of the dose distribution in the lung. Methods and Materials: The data from 382 breast cancer, malignant lymphoma, and inoperable non-small-cell lung cancer patients from two centers were studied. Radiation pneumonitis was scored using the Southwestern Oncology Group criteria. Dose-volume histograms of the lungs were calculated from the dose distributions that were corrected for dose per fraction effects. The dose-volume histogram of each patient was reduced to a single parameter using different local dose-effect relationships. Examples of single parameters were the mean lung dose (MLD) and the volume of lung receiving more than a threshold dose (V-Dth). The parameters for the different NTCP models were fit to patient data using a maximum likelihood analysis. Results: The best fit resulted in a linear local dose-effect relationship, with the MLD as the resulting single parameter. The relationship between the MLD and NTCP could be described with a median toxic dose (TD50) of 30.8 Gy and a steepness parameter m of 0.37. The best fit for the relationship between the V-Dth and the NTCP was obtained with a D-th of 13 Gy. The MLD model was found to be significantly better than the VIth model (p 35%. For arbitrary dose distributions, an estimate of the uncertainty in the NTCP could be determined using the probability distribution of the parameter values of the Lyman-Kutcher-Burman model. Conclusion: The maximum likelihood method revealed that the underlying local dose-effect relation for radiation pneumonitis was linear (the MLD model), rather than a step function (the V-Dth model). Thus, for the studied patient population, the MLD was the most accurate predictor for the incidence of radiation pneumonitis. (C) 2003 Elsevier Science Inc

    Introducing FDG PET/CT-guided chemoradiotherapy for stage III NSCLC in low- and middle-income countries: preliminary results from the IAEA PERTAIN trial

    Get PDF
    PURPOSE: Patients with stage III non-small-cell lung cancer (NSCLC) treated with chemoradiotherapy (CRT) in low- and middle-income countries (LMIC) continue to have a poor prognosis. It is known that FDG PET/CT improves staging, treatment selection and target volume delineation (TVD), and although its use has grown rapidly, it is still not widely available in LMIC. CRT is often used as sequential treatment, but is known to be more effective when given concurrently. The aim of the PERTAIN study was to assess the impact of introducing FDG PET/CT-guided concurrent CRT, supported by training and quality control (QC), on the overall survival (OS) and progression-free survival (PFS) of patients with stage III NSCLC. METHODS: The study included patients with stage III NSCLC from nine medical centres in seven countries. A retrospective cohort was managed according to local practices between January 2010 and July 2014, which involved only optional diagnostic FDG PET/CT for staging (not for TVD), followed by sequential or concurrent CRT. A prospective cohort between August 2015 and October 2018 was treated according to the study protocol including FDG PET/CT in treatment position for staging and multimodal TVD followed by concurrent CRT by specialists trained in protocol-specific TVD and with TVD QC. Kaplan-Meier analysis was used to assess OS and PFS in the retrospective and prospective cohorts. RESULTS: Guidelines for FDG PET/CT image acquisition and TVD were developed and published. All specialists involved in the PERTAIN study received training between June 2014 and May 2016. The PET/CT scanners used received EARL accreditation. In November 2018 a planned interim analysis was performed including 230 patients in the retrospective cohort with a median follow-up of 14 months and 128 patients in the prospective cohort, of whom 69 had a follow-up of at least 1 year. Using the Kaplan-Meier method, OS was significantly longer in the prospective cohort than in the retrospective cohort (23 vs. 14 months, p = 0.012). In addition, median PFS was significantly longer in the prospective cohort than in the retrospective cohort (17 vs. 11 months, p = 0.012). CONCLUSION: In the PERTAIN study, the preliminary results indicate that introducing FDG PET/CT-guided concurrent CRT for patients with stage III NSCLC in LMIC resulted in a significant improvement in OS and PFS. The final study results based on complete data are expected in 2020
    corecore