32 research outputs found

    Selective and Brain-Penetrant ACSS2 Inhibitors Target Breast Cancer Brain Metastatic Cells

    Get PDF
    Breast cancer brain metastasis (BCBM) typically results in an end-stage diagnosis and is hindered by a lack of brain-penetrant drugs. Tumors in the brain rely on the conversion of acetate to acetyl-CoA by the enzyme acetyl-CoA synthetase 2 (ACSS2), a key regulator of fatty acid synthesis and protein acetylation. Here, we used a computational pipeline to identify novel brain-penetrant ACSS2 inhibitors combining pharmacophore-based shape screen methodology with absorption, distribution, metabolism, and excretion (ADME) property predictions. We identified compounds AD-5584 and AD-8007 that were validated for specific binding affinity to ACSS2. Treatment of BCBM cells with AD-5584 and AD-8007 leads to a significant reduction in colony formation, lipid storage, acetyl-CoA levels and cell survival in vitro. In an ex vivo brain-tumor slice model, treatment with AD-8007 and AD-5584 reduced pre-formed tumors and synergized with irradiation in blocking BCBM tumor growth. Treatment with AD-8007 reduced tumor burden and extended survival in vivo. This study identifies selective brain-penetrant ACSS2 inhibitors with efficacy towards breast cancer brain metastasis

    Selective and brain-penetrant ACSS2 inhibitors target breast cancer brain metastatic cells

    Get PDF
    Breast cancer brain metastasis (BCBM) typically results in an end-stage diagnosis and is hindered by a lack of brain-penetrant drugs. Tumors in the brain rely on the conversion of acetate to acetyl-CoA by the enzyme acetyl-CoA synthetase 2 (ACSS2), a key regulator of fatty acid synthesis and protein acetylation. Here, we used a computational pipeline to identify novel brain-penetrant ACSS2 inhibitors combining pharmacophore-based shape screen methodology with absorption, distribution, metabolism, and excretion (ADME) property predictions. We identified compounds AD-5584 and AD-8007 that were validated for specific binding affinity to ACSS2. Treatment of BCBM cells with AD-5584 and AD-8007 leads to a significant reduction in colony formation, lipid storage, acetyl-CoA levels and cell survival in vitro. In an ex vivo brain-tumor slice model, treatment with AD-8007 and AD-5584 reduced pre-formed tumors and synergized with irradiation in blocking BCBM tumor growth. Treatment with AD-8007 reduced tumor burden and extended survival in vivo. This study identifies selective brain-penetrant ACSS2 inhibitors with efficacy towards breast cancer brain metastasis

    A broad inhibitor of acyl-acyl carrier protein synthetases

    No full text
    The acyl-acyl carrier protein synthetase enzyme enables some bacteria to scavenge free fatty acids from the environment for direct use in lipids. This fatty acid recycling pathway can help pathogens circumvent fatty acid synthase (FAS) inhibition with established antibiotics and those in clinical development. AasS enzymes are surprisingly hard to identify as they show high sequence similarity to other adenylate forming enzymes, and only a handful have been correctly annotated to date. Four recently discovered AasS enzymes from Gram negative bacteria, Chlamydia trachomatis, Neisseria gonorrhoeae, and Alistipes finegoldii, form distinct clusters in protein sequence similarity networks and have varying substrate preferences. We previously synthesized C10-AMS, an inhibitor of AasS that mimics the acyl-AMP reaction intermediate. Here we tested its ability to be broadly applicable to enzymes in this class, and found it inhibits all four newly annotated AasS enzymes. C10-AMS therefore provides a tool to study the role of AasS in fatty acid recycling in pathogenic bacteria as well as offers a platform for antibiotic development
    corecore