3 research outputs found

    Rapid Accumulation of Polymorphonuclear Neutrophils in the Corpus luteum during Prostaglandin F2α-Induced Luteolysis in the Cow

    Get PDF
    Prostaglandin F2α (PGF2α) induces luteolysis within a few days in cows, and immune cells increase in number in the regressing corpus luteum (CL), implying that luteolysis is an inflammatory-like immune response. We investigated the rapid change in polymorphonuclear neutrophil (PMN) numbers in response to PGF2α administration as the first cells recruited to inflammatory sites, together with mRNA of interleukin-8 (IL-8: neutrophil chemoattractant) and P-selectin (leukocyte adhesion molecule) in the bovine CL. CLs were collected by ovariectomy at various times after PGF2α injection. The number of PMNs was increased at 5 min after PGF2α administration, whereas IL-8 and P-selectin mRNA increased at 30 min and 2 h, respectively. PGF2α directly stimulated P-selectin protein expression at 5–30 min in luteal endothelial cells (LECs). Moreover, PGF2α enhanced PMN adhesion to LECs, and this enhancement by PGF2α was inhibited by anti-P-selectin antibody, suggesting that P-selectin expression by PGF2α is crucial in PMN migration. In conclusion, PGF2α rapidly induces the accumulation of PMNs into the bovine CL at 5 min and enhances PMN adhesion via P-selectin expression in LECs. It is suggested that luteolytic cascade by PGF2α may involve an acute inflammatory-like response due to rapidly infiltrated PMNs

    Preeclampsia: from epidemiological observations to molecular mechanisms.

    Get PDF
    Preeclampsia is the main cause of maternal mortality and is associated with a five-fold increase in perinatal mortality in developing countries. In spite of this, the etiology of preeclampsia is unknown. The present article analyzes the contradictory results of the use of calcium supplementation in the prevention of preeclampsia, and tries to give an explanation of these results. The proposal of an integrative model to explain the clinical manifestations of preeclampsia is discussed. In this proposal we suggest that preeclampsia is caused by nutritional, environmental and genetic factors that lead to the creation of an imbalance between the free radicals nitric oxide, superoxide and peroxynitrate in the vascular endothelium. The adequate interpretation of this model would allow us to understand that the best way of preventing preeclampsia is the establishment of an adequate prenatal control system involving adequate antioxidant vitamin and mineral supplementation, adequate diagnosis and early treatment of asymptomatic urinary and vaginal infections. The role of infection in the genesis of preeclampsia needs to be studied in depth because it may involve a fundamental change in the prevention and treatment of preeclampsia
    corecore