4 research outputs found

    Bacillus thuringiensis Toxins: Functional Characterization and Mechanism of Action

    Get PDF
    Bacillus thuringiensis (Bt)-based products are the most successful microbial insecticides to date. This entomopathogenic bacterium produces different kinds of proteins whose specific toxicity has been shown against a wide range of insect orders, nematodes, mites, protozoa, and human cancer cells. Some of these proteins are accumulated in parasporal crystals during the sporulation phase (Cry and Cyt proteins), whereas other proteins are secreted in the vegetative phase of growth (Vip and Sip toxins). Currently, insecticidal proteins belonging to different groups (Cry and Vip3 proteins) are widely used to control insect pests and vectors both in formulated sprays and in transgenic crops (the so-called Bt crops). Despite the extensive use of these proteins in insect pest control, especially Cry and Vip3, their mode of action is not completely understood

    Activation of Bacillus thuringiensis Cry1I to a 50 kDa stable core impairs its full toxicity to Ostrinia nubilalis

    Get PDF
    Bacillus thuringiensis Cry1I insecticidal proteins are structurally similar to other three-domain Cry proteins, although their size, activity spectrum, and expression at the stationary phase are unique among other members of the Cry1 family. The mode of action of Cry1 proteins is not completely understood but the existence of an activation step prior to specific binding is widely accepted. In this study, we attempted to characterize and determine the importance of the activation process in the mode of action of Cry1I, as Cry1Ia protoxin or its partially processed form showed significantly higher toxicity to Ostrinia nubilalis than the fully processed protein either activated with trypsin or with O. nubilalis midgut juice. Oligomerization studies showed that Cry1Ia protoxin, in solution, formed dimers spontaneously, and the incubation of Cry1Ia protoxin with O. nubilalis brush border membrane vesicles (BBMV) promoted the formation of dimers of the partially processed form. While no oligomerization of fully activated proteins after incubation with BBMV was detected. The results of the in vitro competition assays showed that both the Cry1Ia protoxin and the approx. 50 kDa activated proteins bind specifically to the O. nubilalis BBMV and compete for the same binding sites. Accordingly, the in vivo binding competition assays show a decrease in toxicity following the addition of an excess of 50 kDa activated protein. Consequently, as full activation of Cry1I protein diminishes its toxicity against lepidopterans, preventing or decelerating proteolysis might increase the efficacy of this protein in Bt-based products

    PrĂ ctiques TMMG (33198) Biotecnologia

    No full text
    Aquests materials docents han rebut un incentiu del Servei de Política LingüísticaEl document recull totes les diapositives de les projeccions realitzades en cadascuna de les sesiones de de què consten les pràctiques de l'assignatura Tècniques Moleculars en la Millora GenèticaThe document compiles all the slides of the sessions included in the practical lessons of the topic Molecular Techniques in Genetic Improvemen

    Insecticidal activity of strains of <i>Bacillus thuringiensis</i> on larvae and adults of <i>Bactrocera oleae</i> Gmelin (Dipt. Tephritidae)

    No full text
    The olive fly, Bactrocera oleae, is the key pest on olives in the Mediterranean area. The pest can destroy, in some cases, up to 70% of the olive production. Its control relies mainly on chemical treatments, sometimes applied by aircraft over vast areas, with their subsequent ecological and toxicological side effects. Bacillus thuringiensis is a spore-forming soil bacterium which produces a protein crystal toxic to some insects, including the orders of Lepidoptera, Diptera, and Coleoptera and other invertebrates. The aim of this study was to search for isolates toxic to B. oleae. Several hundred B. thuringiensis isolates were obtained from olive groves and olive presses in different areas of Greece, Sardinia (Italy), and Spain and from cooperating scientists throughout the world. Some isolates were found toxic only to adults or larvae and some to both stages of the olive fly. In addition, the most toxic isolates were assayed on Opius concolor Szepl. (Hym. Braconidae), the most important parasitoid of the olive fruit fly. Only 3 isolates out of 14 gave significant mortality against this parasitoid. Several of the most toxic crystalliferous isolates may contain novel toxins since they gave no PCR products when probed with primers specified for 39 known toxin genes
    corecore