23 research outputs found

    An attentive neural architecture for joint segmentation and parsing and its application to real estate ads

    Get PDF
    In processing human produced text using natural language processing (NLP) techniques, two fundamental subtasks that arise are (i) segmentation of the plain text into meaningful subunits (e.g., entities), and (ii) dependency parsing, to establish relations between subunits. In this paper, we develop a relatively simple and effective neural joint model that performs both segmentation and dependency parsing together, instead of one after the other as in most state-of-the-art works. We will focus in particular on the real estate ad setting, aiming to convert an ad to a structured description, which we name property tree, comprising the tasks of (1) identifying important entities of a property (e.g., rooms) from classifieds and (2) structuring them into a tree format. In this work, we propose a new joint model that is able to tackle the two tasks simultaneously and construct the property tree by (i) avoiding the error propagation that would arise from the subtasks one after the other in a pipelined fashion, and (ii) exploiting the interactions between the subtasks. For this purpose, we perform an extensive comparative study of the pipeline methods and the new proposed joint model, reporting an improvement of over three percentage points in the overall edge F1 score of the property tree. Also, we propose attention methods, to encourage our model to focus on salient tokens during the construction of the property tree. Thus we experimentally demonstrate the usefulness of attentive neural architectures for the proposed joint model, showcasing a further improvement of two percentage points in edge F1 score for our application.Comment: Preprint - Accepted for publication in Expert Systems with Application

    Zero-Shot Cross-Lingual Transfer with Meta Learning

    Full text link
    Learning what to share between tasks has been a topic of great importance recently, as strategic sharing of knowledge has been shown to improve downstream task performance. This is particularly important for multilingual applications, as most languages in the world are under-resourced. Here, we consider the setting of training models on multiple different languages at the same time, when little or no data is available for languages other than English. We show that this challenging setup can be approached using meta-learning, where, in addition to training a source language model, another model learns to select which training instances are the most beneficial to the first. We experiment using standard supervised, zero-shot cross-lingual, as well as few-shot cross-lingual settings for different natural language understanding tasks (natural language inference, question answering). Our extensive experimental setup demonstrates the consistent effectiveness of meta-learning for a total of 15 languages. We improve upon the state-of-the-art for zero-shot and few-shot NLI (on MultiNLI and XNLI) and QA (on the MLQA dataset). A comprehensive error analysis indicates that the correlation of typological features between languages can partly explain when parameter sharing learned via meta-learning is beneficial.Comment: Accepted as long paper in EMNLP2020 main conferenc

    Neural approaches to sequence labeling for information extraction

    Get PDF
    Een belangrijk aspect binnen artificiële intelligentie (AI) is het interpreteren van menselijke taal uitgedrukt in tekstuele (geschreven) vorm: natural Language processing (NLP) is belangrijk gezien tekstuele informatie nuttig is voor veel toepassingen. Toch is het verstaan ervan (zogenaamde natural Language understanding, (NLU) een uitdaging, gezien de ongestructureerde vorm van tekst, waarvan de betekenis vaak dubbelzinnig en contextafhankelijk is. In dit proefschrift introduceren we oplossingen voor tekortkomingen van gerelateerd werk bij het behandelen van fundamentele taken in natuurlijke taalverwerking, zoals named entity recognition (i.e. het identificeren van de entiteiten die in een zin voorkomen) en relatie-extractie (het identificeren van relaties tussen entiteiten). Vertrekkend van een specifiek probleem (met name het identificeren van de structuur van een huis aan de hand van een tekstueel zoekertje), bouwen we stapsgewijs een complete (geautomatiseerde) oplossing voor de bovengenoemde taken, op basis van neutrale netwerkarchitecturen. Onze oplossingen zijn algemeen toepasbaar op verschillende toepassingsdomeinen en talen. We beschouwen daarnaast ook de taak van het identificeren van relevante gebeurtenissen tijdens een evenement (bv. een doelpunt tijdens een voetbalwedstrijd), in informatiestromen op Twitter. Meer bepaald formuleren we dit probleem als het labelen van woord sequenties (vergelijkbaar met named entity recognition), waarbij we de chronologische relatie tussen opeenvolgende tweets benutten

    Predicting suicide risk from online postings in Reddit : the UGent-IDLab submission to the CLPysch 2019 Shared Task A

    Get PDF
    This paper describes IDLab’s text classification systems submitted to Task A as part of the CLPsych 2019 shared task. The aim of this shared task was to develop automated systems that predict the degree of suicide risk of people based on their posts on Reddit. Bag-of-words features, emotion features and post level predictions are used to derive user-level predictions. Linear models and ensembles of these models are used to predict final scores. We find that predicting fine-grained risk levels is much more difficult than flagging potentially at-risk users. Furthermore, we do not find clear added value from building richer ensembles compared to simple baselines, given the available training data and the nature of the prediction task

    Adversarial training for multi-context joint entity and relation extraction

    Get PDF
    Adversarial training (AT) is a regularization method that can be used to improve the robustness of neural network methods by adding small perturbations in the training data. We show how to use AT for the tasks of entity recognition and relation extraction. In particular, we demonstrate that applying AT to a general purpose baseline model for jointly extracting entities and relations, allows improving the state-of-the-art effectiveness on several datasets in different contexts (i.e., news, biomedical, and real estate data) and for different languages (English and Dutch).Comment: EMNLP 2018, code is available at https://github.com/bekou/multihead_joint_entity_relation_extractio

    Joint entity recognition and relation extraction as a multi-head selection problem

    Get PDF
    State-of-the-art models for joint entity recognition and relation extraction strongly rely on external natural language processing (NLP) tools such as POS (part-of-speech) taggers and dependency parsers. Thus, the performance of such joint models depends on the quality of the features obtained from these NLP tools. However, these features are not always accurate for various languages and contexts. In this paper, we propose a joint neural model which performs entity recognition and relation extraction simultaneously, without the need of any manually extracted features or the use of any external tool. Specifically, we model the entity recognition task using a CRF (Conditional Random Fields) layer and the relation extraction task as a multi-head selection problem (i.e., potentially identify multiple relations for each entity). We present an extensive experimental setup, to demonstrate the effectiveness of our method using datasets from various contexts (i.e., news, biomedical, real estate) and languages (i.e., English, Dutch). Our model outperforms the previous neural models that use automatically extracted features, while it performs within a reasonable margin of feature-based neural models, or even beats them. (C) 2018 Elsevier Ltd. All rights reserved

    Solving Math Word Problems by Scoring Equations with Recursive Neural Networks

    Full text link
    Solving math word problems is a cornerstone task in assessing language understanding and reasoning capabilities in NLP systems. Recent works use automatic extraction and ranking of candidate solution equations providing the answer to math word problems. In this work, we explore novel approaches to score such candidate solution equations using tree-structured recursive neural network (Tree-RNN) configurations. The advantage of this Tree-RNN approach over using more established sequential representations, is that it can naturally capture the structure of the equations. Our proposed method consists in transforming the mathematical expression of the equation into an expression tree. Further, we encode this tree into a Tree-RNN by using different Tree-LSTM architectures. Experimental results show that our proposed method (i) improves overall performance with more than 3% accuracy points compared to previous state-of-the-art, and with over 18% points on a subset of problems that require more complex reasoning, and (ii) outperforms sequential LSTMs by 4% accuracy points on such more complex problems

    End-to-end neural relation extraction using deep biaffine attention

    Full text link
    We propose a neural network model for joint extraction of named entities and relations between them, without any hand-crafted features. The key contribution of our model is to extend a BiLSTM-CRF-based entity recognition model with a deep biaffine attention layer to model second-order interactions between latent features for relation classification, specifically attending to the role of an entity in a directional relationship. On the benchmark "relation and entity recognition" dataset CoNLL04, experimental results show that our model outperforms previous models, producing new state-of-the-art performances.Comment: Proceedings of the 41st European Conference on Information Retrieval (ECIR 2019), to appea
    corecore