528 research outputs found

    On the Total Number of Bends for Planar Octilinear Drawings

    Full text link
    An octilinear drawing of a planar graph is one in which each edge is drawn as a sequence of horizontal, vertical and diagonal at 45 degrees line-segments. For such drawings to be readable, special care is needed in order to keep the number of bends small. As the problem of finding planar octilinear drawings of minimum number of bends is NP-hard, in this paper we focus on upper and lower bounds. From a recent result of Keszegh et al. on the slope number of planar graphs, we can derive an upper bound of 4n-10 bends for 8-planar graphs with n vertices. We considerably improve this general bound and corresponding previous ones for triconnected 4-, 5- and 6-planar graphs. We also derive non-trivial lower bounds for these three classes of graphs by a technique inspired by the network flow formulation of Tamassia

    Efficient Generation of Geographically Accurate Transit Maps

    Full text link
    We present LOOM (Line-Ordering Optimized Maps), a fully automatic generator of geographically accurate transit maps. The input to LOOM is data about the lines of a given transit network, namely for each line, the sequence of stations it serves and the geographical course the vehicles of this line take. We parse this data from GTFS, the prevailing standard for public transit data. LOOM proceeds in three stages: (1) construct a so-called line graph, where edges correspond to segments of the network with the same set of lines following the same course; (2) construct an ILP that yields a line ordering for each edge which minimizes the total number of line crossings and line separations; (3) based on the line graph and the ILP solution, draw the map. As a naive ILP formulation is too demanding, we derive a new custom-tailored formulation which requires significantly fewer constraints. Furthermore, we present engineering techniques which use structural properties of the line graph to further reduce the ILP size. For the subway network of New York, we can reduce the number of constraints from 229,000 in the naive ILP formulation to about 4,500 with our techniques, enabling solution times of less than a second. Since our maps respect the geography of the transit network, they can be used for tiles and overlays in typical map services. Previous research work either did not take the geographical course of the lines into account, or was concerned with schematic maps without optimizing line crossings or line separations.Comment: 7 page

    Two-Page Book Embeddings of 4-Planar Graphs

    Get PDF
    Back in the Eighties, Heath showed that every 3-planar graph is subhamiltonian and asked whether this result can be extended to a class of graphs of degree greater than three. In this paper we affirmatively answer this question for the class of 4-planar graphs. Our contribution consists of two algorithms: The first one is limited to triconnected graphs, but runs in linear time and uses existing methods for computing hamiltonian cycles in planar graphs. The second one, which solves the general case of the problem, is a quadratic-time algorithm based on the book-embedding viewpoint of the problem.Comment: 21 pages, 16 Figures. A shorter version is to appear at STACS 201
    corecore