159 research outputs found

    Clinical epigenomics: Genome-wide DNA methylation analysis for the diagnosis of Mendelian disorders

    Get PDF
    PURPOSE: We describe the clinical implementation of genome-wide DNA methylation analysis in rare disorders across the EpiSign diagnostic laboratory network and the assessment of results and clinical impact in the first subjects tested. METHODS: We outline the logistics and data flow between an integrated network of clinical diagnostics laboratories in Europe, the United States, and Canada. We describe the clinical validation of EpiSign using 211 specimens and assess the test performance and diagnostic yield in the first 207 subjects tested involving two patient subgroups: the targeted cohort (subjects with previous ambiguous/inconclusive genetic findings including genetic variants of unknown clinical significance) and the screening cohort (subjects with clinical findings consistent with hereditary neurodevelopmental syndromes and no previous conclusive genetic findings). RESULTS: Among the 207 subjects tested, 57 (27.6%) were positive for a diagnostic episignature including 48/136 (35.3%) in the targeted cohort and 8/71 (11.3%) in the screening cohort, with 4/207 (1.9%) remaining inconclusive after EpiSign analysis. CONCLUSION: This study describes the implementation of diagnostic clinical genomic DNA methylation testing in patients with rare disorders. It provides strong evidence of clinical utility of EpiSign analysis, including the ability to provide conclusive findings in the majority of subjects tested

    Genomic data in prognostic models—what is lost in translation? The case of deletion 17p and mutant TP53 in chronic lymphocytic leukaemia

    Get PDF
    Genomic technologies are revolutionizing the practice of haematology-oncology, leading to improved disease detection, more accurate prognostication and targeted treatment decisions. These advances, however, have also introduced new clinical challenges, which include problems of prognostic underdetermination and its attendant risks of over- and undertreatment. Genomic data is generated from different technologies, from cytogenetics to next-generation sequencing, which are often interpreted interchangeably and in a binary fashion—as the presence or absence of a given chromosomal deletion or mutation—an oversimplification which may lead to mistaken prognosis. We discuss the clinical use of one such prognostic marker, represented by sequence and copy number alterations in TP53, located on chromosome 17p. Mutations in TP53 are strongly linked to poor prognosis in a variety of haematological malignancies, including chronic lymphocytic leukaemia (CLL). We review studies in CLL which utilize the 17p deletion or TP53 mutations for prognostic stratification with specific focus on the technologies used for detection, the thresholds established for clinical significance, and the clinical contexts in which these alterations are identified. The case of CLL illustrates issues arising from simplistic, binary interpretation of genetic testing and highlights the need to apply a critical lens when incorporating genomics into prognostic models

    Diagnostic utility of genome-wide dna methylation analysis in mendelian neurodevelopmental disorders

    Get PDF
    Mendelian neurodevelopmental disorders customarily present with complex and overlapping symptoms, complicating the clinical diagnosis. Individuals with a growing number of the so-called rare disorders exhibit unique, disorder-specific DNA methylation patterns, consequent to the underlying gene defects. Besides providing insights to the pathophysiology and molecular biology of these disorders, we can use these epigenetic patterns as functional biomarkers for the screening and diagnosis of these conditions. This review summarizes our current understanding of DNA methylation episignatures in rare disorders and describes the underlying technology and analytical approaches. We discuss the computational parameters, including statistical and machine learning methods, used for the screening and classification of genetic variants of uncertain clinical significance. Describing the rationale and principles applied to the specific computational models that are used to develop and adapt the DNA methylation episignatures for the diagnosis of rare disorders, we highlight the opportunities and challenges in this emerging branch of diagnostic medicine

    Glucose-induced, duration-dependent genome-wide DNA methylation changes in human endothelial cells

    Get PDF
    DNA methylation, a critical epigenetic mechanism, plays an important role in governing gene expressions during biological processes such as aging, which is well known to be accelerated in hyperglycemia (diabetes). In the present study, we investigated the effects of glucose on whole genome DNA methylation in small [human retinal microvascular endothelial cells (HRECs)] and large [human umbilical vein endothelial cells (HUVECs)] vessel endothelial cell (EC) lines exposed to basal or high glucose-containing media for variable lengths of time. Using the Infinium EPIC array, we obtained 773,133 CpG sites (probes) for analysis. Unsupervised clustering of the top 5% probes identified four distinct clusters within EC groups, with significant methylation differences attributed to EC types and the duration of cell culture rather than glucose stimuli alone. When comparing the ECs incubated for 2 days versus 7 days, hierarchical clustering analyses [methylation change \u3e10% and false discovery rate (FDR) \u3c0.05] identified 17,354 and 128 differentially methylated CpGs for HUVECs and HRECs, respectively. Predominant DNA hypermethylation was associated with the length of culture and was enriched for gene enhancer elements and regions surrounding CpG shores and shelves. We identified 88 differentially methylated regions (DMRs) for HUVECs and 8 DMRs for HRECs (all FDR \u3c0.05). Pathway enrichment analyses of DMRs highlighted involvement of regulators of embryonic development (i.e., HOX genes) and cellular differentiation [transforming growth factor- (TGF-) family members]. Collectively, our findings suggest that DNA methylation is a complex process that involves tightly coordinated, cell-specific mechanisms. Such changes in methylation overlap genes critical for cellular differentiation and embryonic development

    Movement disorders associated with hemochromatosis

    Get PDF
    Background: Hereditary hemochromatosis (HH) is a genetic disorder causing pathological iron deposition and functional impairment of various organs, predominantly the liver. We assessed patients with HH for the presence of movement disorders. Methods: We reviewed the charts of 616 patients with HH who attended hemochromatosis clinic at London Health Sciences Centre, London, ON, Canada, from 1988 to 2015. Results: We found three HH patients with movement disorders, without any other major systemic manifestation. One had parkinsonism, another had chorea, and the third had tremor. All three patients had evidence of iron deposition in the brain, affecting the basal ganglia in the first two, and the dentate nucleus, red nucleus, and substantia nigra in the third patient. In addition to the C282Y homozygous mutation in the HFE gene, two of our patients had non-HFE gene mutations. Conclusion: HH should be considered in the differential diagnosis of movement disorders with pathological brain iron deposition. We report for the first time chorea in a patient with HH. Non-HFE gene mutations may predispose HH patients to iron deposition in the brain

    Genetic Testing in Children with Epilepsy: Report of a Single-Center Experience

    Get PDF
    Background: Retrospective observational study to determine diagnostic yield and utility of genetic testing in children with epilepsy attending the Epilepsy Clinic at Children\u27s Hospital, London, Ontario, Canada. Methods: Children (birth-18 years) with epilepsy, who were seen in a 10-year period (January 1, 2008-March 31, 2018), were selected using defined inclusion criteria and by combining clinic datasets and laboratory records. Results: In total, 105 children (52.38% male and 47.61% female) with a variety of seizures were included in the analysis. Developmental delay was documented in the majority (83; 79.04%). Overall, a genetic diagnosis was established in 24 (22.85%) children. The diagnostic yield was highest for whole-exome sequencing (WES), at 35.71%. The yield from microarray was 8.33%. Yields of single-gene testing (18.60%) and targeted multigene panel testing (19.23%) were very similar. Several likely pathogenic and pathogenic variants not previously reported were identified and categorized using ACMG criteria. All diagnosed patients underwent a review of anti-seizure medication management and received counseling on natural history of their disease, possible complications, recurrence risks, and possibilities of preimplantation or prenatal genetic diagnosis. Conclusions: Our study confirms the multiple benefits of detecting a genetic etiology in children with epilepsy. Similar yields in single versus multigene testing underscore the importance of accurate clinical phenotyping. Patients with epilepsy and their caregivers in Ontario would undoubtedly benefit from repatriation of multigene panels and WES to the province

    A case of congenital prothrombin deficiency with two concurrent mutations in the prothrombin gene

    Get PDF
    Congenital prothrombin deficiency is an extremely rare, autosomal recessive bleeding disorder with a prevalence of 1 in 2 million individuals. Here, we report a case of congenital prothrombin deficiency with two concurrent mutations in the prothrombin gene (F2), affecting the heavy B chain. The patient presented with a history of multiple bleeding events in his youth that are mostly trauma associated, with a family history of prothrombin deficiency. Laboratory analysis showed a prolonged activated partial thromboplastin time and a prothrombin activity level of 5%. Genetic analysis of the F2 gene identified two heterozygous variants; one is a previously reported pathogenic deletion (c.1814_1815del; p.His605Argfs*13), and the other is a novel missense variant (c.1147C\u3eT; p.Arg383Trp). In silico analysis predicted that p.Arg383Trp is likely to be disease causing, as it affects one of the anion-binding exosites-I of the B chain. This case highlights the significance of molecular findings in confirming the diagnosis of patients with congenital prothrombin deficiency

    Examining the Diagnostic Yield of Tumour Testing and Qualifying Germline Concordance for Hereditary Cancer Variants in Patients with High-Grade Serous Carcinoma

    Get PDF
    Despite advances in treatment, prognosis for most patients with high-grade serous carcinoma (HGSC) remains poor. Genomic alterations in the homologous recombination (HR) pathway are used for cancer risk assessment and render tumours sensitive to platinum-based chemotherapy and poly (ADP-ribose) polymerase inhibitors (PARPi), which can be associated with more favourable outcomes. In addition to patients with tumours containing BRCA1 or BRCA2 pathologic variants, there is emerging evidence that patients with tumours harbouring pathologic variants in other HR genes may also benefit from PARPi therapy. The objective of this study is to assess the feasibility of primary-tumour testing by examining the concordance of variant detection between germline and tumour-variant status using a custom hereditary cancer gene panel (HCP). From April 2019 to November 2020, HCP variant testing was performed on 146 HGSC formalin-fixed, paraffin-embedded tissue samples using next-generation sequencing. Of those, 78 patients also underwent HCP germline testing using blood samples. A pathogenic variant was detected in 41.1% (60/146) of tumours tested, with 68.3% (41/60) having either a BRCA1 or BRCA2 variant (n = 36), or BRCA1/2 plus a second variant (n = 5), and 31.2% (19/60) carrying a pathogenic variant in another HCP gene. The overall variant rate among the paired germline and tumour samples was 43.6% (34/78), with the remaining 56% (44/78) having no pathogenic variant detected in the germline or tumour. The overall BRCA1/2 variant rate for paired samples was 33.3% (26/78), with germline variants detected in 11.5% (9/78). A non-BRCA1/2 germline variant in another HCP gene was detected in 9.0% (7/78). All germline variants were detected in the tumour, demonstrating 100% concordance. These data provide evidence supporting the feasibility of primary-tumour testing for detecting germline and somatic variants in HCP genes in patients with HGSC, which can be used to guide clinical decision-making, and may provide opportunity for improving patient triage and clinical genetic referral practices
    • …
    corecore