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in human endothelial cells
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Aref-Eshghi E, Biswas S, Chen C, Sadikovic B, Chakrabarti S.
Glucose-induced, duration-dependent genome-wide DNA methyl-
ation changes in human endothelial cells. Am J Physiol Cell Physiol
319: C268–C276, 2020. First published May 27, 2020; doi:10.1152/
ajpcell.00011.2020.—DNA methylation, a critical epigenetic mecha-
nism, plays an important role in governing gene expressions during
biological processes such as aging, which is well known to be accelerated
in hyperglycemia (diabetes). In the present study, we investigated the
effects of glucose on whole genome DNA methylation in small [human
retinal microvascular endothelial cells (HRECs)] and large [human um-
bilical vein endothelial cells (HUVECs)] vessel endothelial cell (EC)
lines exposed to basal or high glucose-containing media for variable
lengths of time. Using the Infinium EPIC array, we obtained 773,133
CpG sites (probes) for analysis. Unsupervised clustering of the top 5%
probes identified four distinct clusters within EC groups, with significant
methylation differences attributed to EC types and the duration of cell
culture rather than glucose stimuli alone. When comparing the ECs
incubated for 2 days versus 7 days, hierarchical clustering analyses
[methylation change �10% and false discovery rate (FDR) �0.05]
identified 17,354 and 128 differentially methylated CpGs for HUVECs
and HRECs, respectively. Predominant DNA hypermethylation was
associated with the length of culture and was enriched for gene enhancer
elements and regions surrounding CpG shores and shelves. We identified
88 differentially methylated regions (DMRs) for HUVECs and 8 DMRs
for HRECs (all FDR �0.05). Pathway enrichment analyses of DMRs
highlighted involvement of regulators of embryonic development (i.e.,
HOX genes) and cellular differentiation [transforming growth factor-�
(TGF-�) family members]. Collectively, our findings suggest that DNA
methylation is a complex process that involves tightly coordinated,
cell-specific mechanisms. Such changes in methylation overlap genes
critical for cellular differentiation and embryonic development.

diabetes; DNA methylation; endothelial cells

INTRODUCTION

Vascular endothelial cell (EC) dysfunction is a major factor
in the development of chronic diabetic complications (58).
Secondary to hyperglycemia, one of the major mechanisms
leading to EC dysfunction is an increase in the formation of
reactive oxygen species (46). Oxidative stress-induced DNA
damage promotes alterations in the transcriptional states of
ECs (46), which can be observed in both aging and diabetes
(38, 42, 71). Consistently, some of the changes seen at the
cellular and tissue levels in diabetes are similar to those seen in

normal aging (17, 21, 51), and these changes are typically
reached at an accelerated rate (20).

Transcriptional states in the cells are regulated by epigenetic
mechanisms, the most comprehensively studied of which in-
clude DNA methylation and posttranslational histone tail mod-
ifications. We have previously shown that glucose-induced
oxidative stress causes histone acetylation by p300, a transcrip-
tional coactivator with intrinsic histone acetyltransferase activ-
ity (20). We have also demonstrated that glucose-induced
changes are associated with reduced expression of sirtuins, a
class of histone deacetylases required for balancing the acety-
lation of histone tail residues (49). Increasing evidence has also
highlighted glucose-induced EC changes in the transcription of
genes involved in inflammation. Activation of nuclear fac-
tor-�B (NF-�B)-dependent signaling in ECs exposed to hyper-
glycemia has been observed through histone modification
changes in the NFKB3 promoter region, including increased
monomethylation of histone 3 lysine 4 (H3K4), reduced H3K9
methylation, and histone H3K9 hyperacetylation (15). Activa-
tion of other inflammatory genes [e.g., heme oxygenase 1
(HMOX1), IL8, TNFA, COX2, and matrix metalloproteinase 10
(MMP10)], through promoter H3K9 hyperacetylation, has also
been frequently observed in vascular and immune cells of
patients with diabetes (44, 52).

In addition to histone modifications, the methylation of
DNA CpG dinucleotides has gained interest in studying com-
plex diseases (1, 3, 18, 41, 53, 68). DNA methylation in gene
promoters regulates transcription through an inverse associa-
tion with gene expression. In noncoding areas, however, DNA
methylation is involved in the regulation of enhancers, cis- and
trans-acting elements, and maintaining the genomic integrity
and silencing of transposons (2). Although the role of epige-
netic mechanisms in chronic diabetic complications is just
beginning to be unraveled (53), the detailed role of DNA
methylation and its alterations in response to glucose in EC
dysfunction are poorly investigated. Of note, however, emerg-
ing evidence has recently shown that aberrant DNA methyla-
tions are associated with some chronic diabetic complications
including diabetic retinopathy (33, 47, 48, 55).

In response to glucose and subsequent oxidative stress, ECs
demonstrate responses that are similar to the changes seen in
aging (49); however, these are observed to variable degrees in
different cell types. Large vessel ECs, for instance, change at a
slower pace compared with microvascular ECs (49). Hence, it
is important to examine both macrovascular and microvascular
ECs in the context of glucose-induced duration-dependent
changes. To explore such alterations due to prolonged glucose
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culture, in the present study, we examined human umbilical
vein endothelial cells (HUVECs), representing ECs from the
macrovasculature, and human retinal microvascular endothe-
lial cells (HRECs), representing the microvasculature. We
exposed the two cell populations for variable lengths of time to
basal and high glucose-containing media, enabling us to ex-
amine the effects of glucose and aging on whole genome DNA
methylation. We then identified the genomic regions and
neighboring/overlapping genes highly influenced in this pro-
cess and evaluated the differences and similarities of the
glucose-induced changes in DNA methylation between the
microvascular and macrovascular ECs.

MATERIALS AND METHODS

Cell treatment and culture. For our experiments, we used both
human retinal microvascular ECs (HRECs; mature microvascular
ECs, cat. no. ACBRI 181; Cell Systems, Kirkland, WA) and human
umbilical vein ECs (HUVECs; relatively immature large vessel ECs,
cat. no. C2519A; Lonza, Walkersville, MD). As described previously
(10, 11, 20, 29, 49, 63, 64), these cells were grown in complete
EBM-2 medium (Lonza, Kirkland, WA) supplemented with EGM-2
SingleQuots (Lonza) and 10% fetal bovine serum. Prior to experi-
mentation, cells were plated at a density of 4.3 � 105 cells/mL and
used between passages 4 and 5 to minimize variability. At 80%
confluence, cells were cultured in serum- and growth-free medium
overnight before exposure to a final concentration of 5 mM glucose
(to mimic euglycemia) or 25 mM glucose (to mimic hyperglycemia).
Cells were then examined following either 2- or 7-day incubation. For
our methylation array, three independent samples were used for each
group, which amounted to a total sample size of n � 12 independent
samples per cell line.

DNA extraction. DNA extractions were performed using Blood &
Cell Culture DNA Mini Kit (Qiagen) as per the manufacturer’s
instructions. Briefly, ~107 ECs were lysed, and proteins were simul-
taneously denatured. Proteinase K was then added. Following incu-
bation, lysates were loaded onto the columns. DNA binds to the
column, while other cell constituents pass through. Following wash-
ing, pure, high-molecular weight DNA is eluted and precipitated with
isopropanol. The extracted DNA was quantified spectrophotometri-
cally.

Methylation array and quality assessment. Methylation assess-
ment, bioinformatics, and statistical analysis were performed using a
modification of previously published methods (4–9, 57). Following
bisulfite conversion, DNA methylation analysis was performed using
the Illumina Infinium MethylationEPIC BeadChip (San Diego, CA),
according to the manufacturer’s protocol, at the London Health
Sciences Molecular Genetics Laboratory. This array covers above
850,000 human genomic methylation CpG sites, including 99% of the
Reference Sequence Database (RefSeq) genes and 96% of CpG
islands (CGIs). All of the samples were processed in a single exper-
iment to avoid batch effect. Methylated and unmethylated intensity
data were generated as IDAT files and imported into R 3.5.2 for
analysis. Normalization was performed using Illumina normalization
method with background correction using the minfi package in R
3.5.2. Probes with a detection P value �0.01 were excluded from the
downstream analysis. For further quality improvement, probes located
on chromosomes X and Y, probes known to contain single-nucleotide
polymorphisms (SNPs) at the CpG interrogation or the single-nucle-
otide extension, and probes known to cross-react with sex chromo-
somes were removed. All of the samples were examined for genome-
wide methylation density, and it was ensured that none of the samples
deviate from representing a bimodal distribution. Following the nor-
malization and removal of nonspecific probes, a principal component
analysis was performed to identify outliers or poor quality samples.
The methylation levels for each probe were measured as beta value

(�), calculated from the ratio of the methylated signals versus the sum
of unmethylated and methylated signals, ranging between 0 (no
methylation) and 1 (full methylation). This value was used for
biological interpretation and visualization. For statistical analysis,
wherever a normal distribution was required, beta values were trans-
formed to M values using the following equation: log2 [�/(1 � �)].

Clustering and dimension reduction and identification of differen-
tially methylated CpGs. Hierarchical clustering was performed using
Ward’s method on Euclidean distance by the gplots package. Multi-
ple-dimensional scaling was performed by scaling of the pairwise
Euclidean distances between the samples. The analyses were per-
formed using the top 5% highly variable probes and probes selected to
be significantly differentially methylated. Subsequently, the analysis
was repeated using pairwise comparison of the methylation levels
across the samples with different duration and concentrations of the
treatment, separately for each cell type. A methylation difference of
�0.1 and a false discovery rate (FDR) of �0.05 (limma univariate
regression modeling) were considered significant (54). For significant
probes in each comparison (e.g., between different durations of
treatment), we adjusted the analysis for the other factor (i.e., the
concentration of glucose), using limma multivariate regression mod-
eling, to evaluate their potential confounding effect on the identified
CpGs.

Identification of the differentially methylated regions. To identify
genomic regions harboring methylation changes [differentially meth-
ylated regions (DMRs)], the DMRcate algorithm was used. First, the
P values were calculated for every probe using multivariable limma
regression modeling. Next, these values were kernel smoothed to
identify regions with a minimum of three probes no more than 1 kb
apart and an average regional methylation difference �10%. We
selected regions with a Stouffer-transformed FDR �0.05 across the
identified DMRs. A pathway enrichment analysis was conducted
using a hypergeometric model, implemented in the ReactomePA
package, on the list of genes found to be overlapping the identified
DMRs.

RESULTS

DNA methylation profiling of HRECs and HUVECs cultured
in basal or high-glucose media. Human retinal microvascular
endothelial cells (HRECs) and human umbilical vein endothe-
lial cells (HUVECs) were incubated with 5 mM glucose
(mimicking euglycemia) or 25 mM glucose (mimicking hyper-
glycemia), for durations of 2 and 7 days. Following a genome-
wide DNA methylation experiment using Infinium EPIC arrays
and quality controls, methylation levels at 773,133 CpG sites
(probes) were obtained for analysis. We first performed an
unsupervised clustering analysis on the top 5% probes with the
greatest variability in their methylation levels across the 24
samples. This analysis identified four distinct clusters within
the samples (Fig. 1). The greatest difference was related to
the cell types, i.e., between HUVECs and HRECs, which
were found to have dramatically different methylation pro-
files from each other. The next separation occurred on the
basis of the duration of incubation. In both HUVECs and
HRECs, samples treated for 7 days were placed at distance
from those treated for 2 days. This pattern was more
prominent in the HUVECs than in HRECs. No difference
was observed between the samples that were incubated in
different glucose concentrations. Analysis of the data using
the entire probes led to similar observations (Supplemental
Fig. S1; see https://doi.org/10.6084/m9.figshare.12200870).
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The duration of cell culture is the only inducer of DNA
methylation changes. The comparison of the samples incubated
for 2 days versus 7 days identified 17,354 and 128 differentially
methylated CpGs for HUVECs and HRECs, respectively [meth-
ylation change �10% and false discovery rate (FDR) �0.05;
Supplemental Tables S1 and S2 (all Supplemental Tables are
available at https://doi.org/10.6084/m9.figshare.11551551) and
Fig. 2]. No probe met these cutoffs when applied to the compar-
ison between the samples incubated in different glucose concen-
trations. Neither was any significant difference found in this
analysis when a lower cutoff for methylation difference was
applied (down to 5%), indicating that the concentration of glucose
at incubation does not induce considerable methylation changes in
these cells. Therefore, the rest of the study focused on the
differences induced by the duration of incubation. We also ques-
tioned whether the observed differences by the duration of treat-
ment could be confounded by the glucose concentrations of the
culture. Using multivariable models, we adjusted the analysis for
the concentration of the glucose (Supplemental Tables S1 and S2).
The results indicated that glucose concentrations have a limited
effect on the observed differences by the duration of treatment. As
an example, of the total of 17,354 significant probes in HUVECs,
only 78 (0.4%) lost the significance of FDR �0.05, while still
maintaining FDR �0.1.

The examination of the two sets of differentially methylated
CpGs using hierarchical clustering revealed that each set alone
was capable of separating the samples treated for 7 days from
those treated for 2 days in both HUVECs and HRECs (Fig. 2).
However, the nominal overlap between them was limited to
only 18 probes. Both probe sets mainly represented a gain of

methylation in the seventh day of incubation compared with
the second day (76% and 57% of the significant probes for
HUVECs and HRECs, respectively). The levels of methylation
changes for these probes in both cell types were within the
same range (mean difference 	 standard deviation ~13 	 3%).
The CpGs identified in HUVECs were found to be significantly
enriched at enhancer elements [odds ratio (OR), 1.21; P value
(P) � 1.7 � 10�6] and the regions surrounding CpG islands,
i.e., shores and shelves (OR, 1.23; P � 2.2 � 10�16], but
significantly less likely to occur at CpG islands (OR, 0.34; P �
2.2 � 10�16) and promoters (OR, 0.27; P � 2.2 � 10�16)
compared with the entire CpGs tested. These estimates were
similar for the HREC probe set; however, because of the small
number of probes in this list, they did not yield a significant P
value (�0.05) in some of the analyses (enhancers: OR, 1.70;
P � 0.2; shores and shelves: OR, 1.13; P � 0.5; islands: OR,
0.34; P � 0.0001; promoters: OR, 0.56; P � 0.08).

Differentially methylated regions in HUVECs and HRECs
following extended incubation exposures. To identify the target
genes affected by the differential duration of incubation, we
mapped differentially methylated regions (DMRs) across the
genome harboring a minimum of three consecutive CpGs and
an average regional methylation difference of �10% between
the cells incubated for 2 versus 7 days (Supplemental Tables
S3 and S4). This analysis identified 88 DMRs for HUVECs
(Supplemental Fig. S2; see https://doi.org/10.6084/m9.figshare.
11550594) and 8 DMRs for HRECs (Supplemental Fig. S3; see
https://doi.org/10.6084/m9.figshare.11551461; all FDRs �0.05).
The most significant DMRs in HUVECs in the seventh day
compared with the second day of incubation included a hypom-
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Fig. 1. DNA methylation profiling of human retinal microvascular endothelial cells (HRECs) and human umbilical vein endothelial cells (HUVECs).
Unsupervised clustering using the top 5% variable CpGs in HUVECs and HRECs in different culture states shows complete separation based on the cell types
(the greatest difference) and the duration of culture. There is no distinction between the cells treated with different concentrations of glucose. A: hierarchical
clustering with heat map: rows indicate CpGs, and columns show the samples; the color scale from blue to red indicates the level of methylation from 0 to 1.
B: the top two dimensions from the multidimensional scaling indicate a greater distance for duration of treatment in HUVECs than in HRECs (n � 3 independent
samples per group).
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ethylation of an extended region annotating to the promoters of
HOXA2 and HOTAIRM1 (33 CpGs, 11% methylation difference;
FDR, 1.7 � 10�46), as well as a hypomethylation in the SMAD3
promoter (11 CpGs, 11% methylation difference; FDR, 7.3 �
10�26). In HRECs, loss of methylation in the promoter of Meis
homeobox 1 (MEIS1) was the most significant event (13 CpGs,
11% methylation difference; FDR, 6.5 � 10�6). Two regions
were shared across the two DMR lists including the hypermeth-
ylation of the promoters of HOXC4–6 and SMAD6 (11% meth-
ylation change for both DMRs in both HUVECs and HRECs).

Enrichment of HOX and transforming growth factor-� sig-
naling pathway genes among the DMRs. Within both of the
identified DMRs were numerous genes encoding the members
of HOX proteins including various HOX gene family members
and MEIS1. Enrichment analysis was performed to identify the
pathways whose members were overrepresented within the
genes in each of the two DMR lists (Fig. 3 and Supplemental
Table S5). In the DMRs of HUVECs, the most enriched
pathways included activation of the HOX genes followed by
TGF-� signaling. Both of these were also present as the most
significant pathways in the DMRs of HRECs. Bone morpho-
genetic protein (BMP) signaling, complement cascade, and
runt-related transcription factor 2 (RUNX2) transcriptional
regulation were additional identified pathways to be enriched
in the DMRs of HRECs (Fig. 3 and Supplemental Table S5).
Therefore, despite a moderate overlap across the two DMR

lists, both cell lines represented members of shared functional
pathways.

DISCUSSION

DNA methylation is a critical epigenetic mechanism that
plays an important role in governing gene expressions during
biological processes (i.e., embryonic development; 43). In the
context of disease, DNA methylation can be greatly altered,
which is evident by the large number of DMRs documented in
various cancers (25, 32, 34, 50) and genetic/developmental
conditions (4–8, 57). Although the rapid advent of sequencing
technologies provides the opportunity to detect aberrant DMRs
in human diseases, the development of these technologies also
offers great potential for elucidating the roles of DNA meth-
ylation in in vitro cellular systems—which remain largely
unexplored. In the present study, we investigated genome-wide
DNA methylation differences in two different EC lines (HU-
VECs and HRECs) cultured in basal or hyperglycemic envi-
ronments for different durations and identified differentially
methylated regions in these cells, which have not been reported
previously.

Following the results from clustering analysis of the CpG
probes, the examination of the CpG methylation patterns be-
tween HUVECs and HRECs revealed that different EC types
exhibited distinct methylation profiles; specifically, four sepa-
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rate clusters were observed within the samples. Previous re-
ports have demonstrated the existence of functional DNA
methylation differences between cell types, between tissues,
and across individuals (31, 40, 74). Our findings are in line
with these data and demonstrate that the two EC lines would
also manifest distinct methylation profiles. Intriguingly, it was
only the duration of cell culture, and not glucose concentration,
that induced significant methylation changes in both large and
small vessel ECs. More specifically, at the 7-day mark, both
HUVECs and HRECs demonstrated comparable increases in
CpG methylation compared with cells cultured for 2 days.
Although the genome-wide DNA methylation patterns for ECs
have not been reported previously, other studies have demon-
strated that long-term culture of mesenchymal stem cells and
fibroblasts can induce senescence-associated methylation
changes at specific CpG sites and that methylation states (i.e.,
either hypermethylation or hypomethylation) were primarily
dependent on the cell type (14, 35, 56). Another study dem-

onstrated significant CpG island (CGI)-dependent correlations
between methylation and age across nonpathological human
tissues from different anatomical sites in which CGI regions
within gene loci had a greater propensity to gain methylation
with age, whereas nonisland CpGs lost methylation with age
(23). Furthermore, from a compendium of publicly available
genome-wide DNA methylation data, age-related gain of DNA
methylation in 16 different tissues was also shown to accumu-
late at CGIs and their flanking regions, whereas age-related
loss of DNA methylation was present in active regions that
included enhancers (60). In our study, we observed a greater
degree of CpG enrichment at enhancer elements and regions
within CpG shores and shelves in both cultured HRECs and
HUVECs, whereas enriched CpGs were significantly less
likely to occur at CpG islands and promoters. Such DNA
methylation patterns may be attributed to potential cell-specific
differences or an in vitro culture phenomenon. Moreover, other
earlier studies have documented global reductions in the level
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of DNA methylation in senescing fibroblasts (69) and in the
tissues from aging rats (67) and humans (19, 70), which alludes
to the complexity of DNA methylation across tissues.

Although the high concentration of glucose (25 mM) has
been extensively used by others and us (10–12, 20, 28, 29, 39,
49, 63, 64) and has also been shown to cause cellular aging and
downregulation of sirtuins in cellular models of chronic dia-
betic complications (39, 49), we did not find significant high
glucose-induced alterations in DNA methylation in the present
study. One possible explanation for this result may be attrib-
uted to the stable epigenetic nature of DNA methylation marks
during hyperglycemic events. For example, Chen et al. recently
profiled whole genome DNA methylation and the transcrip-
tome of peripheral blood mononuclear cells (PBMCs) from a
human volunteer over a 3-yr period and demonstrated that
active global methylation changes take place before the phys-
iological elevation of glucose levels (19). More specifically,
analysis of MethylC sequencing results revealed that differen-
tially methylated genes were significantly enriched in the
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways related to glucose and diabetes at 80–90 days before the
manifestation of elevated glucose, whereas acute health events,
such as viral infections, mainly contributed to dynamic
changes in the transcriptome that were greatly associated with
immunological-related pathways and terms in KEGG (19).
When examining the cell culture model used in our study, it
may be possible that active DNA methylation changes could
also be occurring at other time points that were not examined,
which warrants additional investigation. Similarly, there is also
a possibility that the lack of significant results with respect to
glucose concentration may be attributed to power limitations.
Another alternative explanation for our observations could be
that once maximal glucose saturation is reached in culture, the
methylation levels of individual CpG sites may reach a plateau.
For instance, in our study, certain CpG sites across TNIP2
(Supplemental Table S1) displayed comparable methylation
intensities between ECs cultured in high glucose for 2 days and
ECs cultured in basal glucose for 7 days. Such findings suggest
that the duration of glucose concentration should still be
considered in the experimental design and continuously mon-
itored when examining DNA methylation patterns. Moreover,
integrating other omics data, such as transcriptomic analyses,
with our DNA methylation findings would provide unique
insights into the relationship between DNA methylation and
other epigenetic molecular markers. Of note, our previous
studies have demonstrated that certain long noncoding RNAs
are differentially expressed at the 48-h mark in high glucose-
treated ECs (10, 29, 63, 64), and DNA methyltransferases
(DNMTs) were also shown to actively participate in the tran-
scriptional regulation of several diabetes-related molecules
(10, 11). More specifically, we and others have demonstrated
increased mRNA levels of DNMTs and subsequent alterations
of methylation activity in HRECs exposed to high glucose and
in the retinas of diabetic rats (10, 73). These alterations of
DNMTs could possibly allude to one of the main mechanisms
that facilitate glucose-induced methylation changes in ECs (10,
27, 47, 48, 73). Interestingly, demethylases such as ten-eleven
translocation (TET) and Jumonji C (JmjC) enzymes, which
facilitate the demethylation of DNA and histones, respectively,
can also balance such methylation statuses (30). Although the
roles of TETs and JmjCs have not been well studied in the

present context, it appears that a dynamic interaction of such
processes can ultimately govern the methylation status of
distinct genomic regions. Accordingly, future studies should
continue incorporating integrative epigenetic experimental ap-
proaches that will help elucidate the molecular underpinnings
of glucose-induced cellular damage. It will also be important to
examine specific mechanisms that study the upstream path-
ways for glucose-induced alterations of DNA methylation. For
example, some studies have demonstrated that oxidative stress
mechanisms can significantly alter the DNA methylation pro-
cess during the progression of diabetic complications (16, 27,
48). Therefore, examining these dynamic interactions using
novel genomic technologies may further illuminate additional
functional elements of the DNA methylation landscape in
hyperglycemic environments.

Several specific loci have been previously documented to
exhibit differential methylation patterns during aging in vitro,
including HOX genes (14, 35) and RUNX2 (35). In line with
these studies, we also observed DMRs in similar genes encod-
ing specific transcription factors involved in cellular differen-
tiation and embryonic development. Notably, among the most
significant DMRs, hypomethylation patterns were observed in
the promoters of HOXA2, HOXB3, and SMAD3 in HUVECs at
the 7-day mark, whereas HOXC4–6 and SMAD6 were hyper-
methylated. In a similar manner, HRECs cultured for 7 days
also exhibited significant hypermethylation in the promoter
regions of SMAD6, HOX4, and HOX6, whereas the most
significant DMR belonged to a hypomethylated promoter en-
coding MEIS1. To further determine the pathways of the genes
identified from the DMRs in ECs, we performed enrichment
analysis that found several pathways involved in development
(i.e., HOX activation), TGF-� signaling, BMP signaling,
RUNX2 transcriptional regulation, and the complement cas-
cade. Given that ECs have critical implications in angiogenesis
(66) and vasculogenesis (62), the differentially methylated loci
(and their respective pathways) identified in our study may be
reflecting the positional identity (65) and the proliferative and
migratory capabilities of ECs. Indeed, both angiogenesis and
vasculogenesis can also be regulated through several mole-
cules, including TGF-� (36), SMAD6 (72), HOX proteins (24),
MEIS1 (45), and RUNX3 (22), which alludes to the dynamic
and overlapping cellular networks present in different EC
subtypes. Moreover, in the context of aging, ECs from aged
mice have been reported to show diminished functional, mi-
gratory, and proliferative capacities (61), whereas endothelial
precursor cell (EPC)-like mononuclear cells were found to be
significantly decreased in the peripheral blood and bone mar-
row of aged mice subjected to hind limb ischemia compared
with wild type (59). Such findings support the notion that both
angiogenesis and vasculogenesis can be impaired with aging. It
is further important to note that SMAD proteins are important
mediators of the TGF-� signaling pathway, which plays a key
role in the increased production of extracellular matrix proteins
during chronic diabetic complications (13, 37). Furthermore,
members of the HOX family are regulated by promoter DNA
methylation and are shear-sensitive endothelial genes that can
be implicated in vascular remodeling, angiogenesis, and extra-
cellular matrix modulation (26). On the basis of our findings,
we conclude that the methylation alterations of specific genes
observed in this study may also contribute to transcriptional
alterations of those genes in ECs, which may or may not
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produce effector proteins during hyperglycemic states. It is
also possible that such processes may be influenced by addi-
tional epigenetic factors (ranging from noncoding RNAs to
histone modifications); however, further investigation is war-
ranted. Nonetheless, it would be quite interesting to examine in
vivo whether specific methylomic changes exist across ECs in
diabetes at various durations of the disease.

Conclusions. Taken together, our study provides novel in-
sights into the DNA methylation profiles associated with glu-
cose-induced and time-dependent effects in cultured ECs. We
present for the first time the finding that cell culture duration is
a strong and more significant inducer of DNA methylation
compared with glucose stimuli alone. As well, the statistically
significant CpG probes in both large and small vessel ECs
mainly demonstrated a hypermethylation during long-term
culture compared with short-term culture, with significant
enrichments in enhancer elements and regions surrounding
CpG shores and shelves. Such DMRs were enriched in
genomic loci involved in embryonic development and cellular
differentiation. Collectively, our findings suggest that DNA
methylation is a complex process that involves tightly coordi-
nated cell-specific changes and such DNA methylation changes
overlap genes critical for cellular differentiation and embryonic
development. This further highlights the importance of under-
standing epigenetic mechanisms underlying chronic glucose
stimulation, as part of the complex molecular mechanisms
implicated in related conditions.
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