33 research outputs found

    APPLICATION OF β€œMOODLE” E-LEARNING SYSTEM IN TEACHING LANGUAGE FOR SPECIFIC PURPOSES

    Get PDF
    The article presents the development experience of online computer-assisted learning package based on modular object-oriented dynamic learning environment (MOODLE) that is designed to teach a foreign language for specific purposes in non-linguistic university. The developed package allows enhancing the teaching process by creating optimal conditions to realize the principles of teaching differentiation and individualization and also by stimulating the students’ motivation to learn the language through various methods and kinds of teaching tasks

    ΠŸΠ ΠžΠ‘ΠžΠŸΠžΠ”Π“ΠžΠ’ΠžΠ’ΠšΠ ΠŸΠžΠ§Π’ И Π”ΠžΠΠΠ«Π₯ ΠžΠ’Π›ΠžΠ–Π•ΠΠ˜Π™ Π‘ Π˜Π‘ΠŸΠžΠ›Π¬Π—ΠžΠ’ΠΠΠ˜Π•Πœ Π’Π•Π₯НИКИ Π­ΠšΠ‘Π’Π ΠΠšΠ¦Π˜ΠžΠΠΠžΠ“Πž Π’Π«ΠœΠžΠ ΠΠ–Π˜Π’ΠΠΠ˜Π― ПРИ Π₯РОМАВОМАББ-Π‘ΠŸΠ•ΠšΠ’Π ΠžΠœΠ•Π’Π Π˜Π§Π•Π‘ΠšΠžΠœ ΠžΠŸΠ Π•Π”Π•Π›Π•ΠΠ˜Π˜ ПАУ

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) are a class of compounds which have been known to be carcinogenic, teratogenic and mutagenic as well as act as pollutants of environmental objects. The determination of PAHs in complex matrices is difficult, and it is very important to use an efficient sample pretreatment technique.Β  A sample preparation technique was developed involving extractive freezing-out and centrifugation of the samples for the determination of polycyclic aromatic hydrocarbons (PAHs) in soils and bottom sediments using gas chromatography – mass spectrometry (GC–MS). Sochi soils (The Imereti Lowlands), turf, sea bottom sediments (Azov Sea, The Temryuk Bay), river bottom sediment (Kurchansky estuary) and Caio Romano (Cuba) island sand were selected as the objects for the research. Soils and bottom sediments which contained no determined PAHs were used as model samples. The conditions of sample preparation have been optimized, and the extraction effects of acetonitrile with water on the PAHs recoveries have been investigated.Β  It was found that for the determination of the compounds consisting from two to four fused aromatic rings such as naphthalene, 2-methylnaphthalene,Β  acenaphthylene, biphenyl, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene, the extraction occurred when the extractive mixture contained 15% acetonitrile. The proposed method detection limits of individual compounds ranged from 0.83 to 0.92 Β΅g/kg. The extractive mixture containing 50% acetonitrile was proposed for the determination of 20 PAHs such as naphthalene, 2-methylnaphthalene, acenaphthene, biphenyl, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, triphenylene, benz[b]fluoranthene, benz[k]fluoranthene, benz[e]pyrene, benz[a]pyrene, indene[1,2,3–c,d]pyrene, dibenz[a,h]anthracene, benz[g,h,i]perylene. The extraction of PAHs in these conditions demonstrated the recoveries from 61% to 97%. As matter of fact, the lower recoveries of PAHs, that contained four or more fused aromatic rings, have been caused by the sorption in the cracks of the solid aqueous phase. The extraction, clear-up of extract and concentration were realized as one step of the sample pretreatment. As a result, the rapid and express technique of the sample preparation with combined GC-MS were proposed for the PAHs determination in soils and bottom sediments. This method’s limits of individual PAHs quantitation ranged from 1 to 5 Β΅g/kg, and these were lower that the maximum permissible concentration.KeyΒ words:Β polycyclicΒ aromaticΒ hydrocarbons, extractive freezing-out, soils, bottom sediments, chromatography analysis.DOI: http://dx.doi.org/10.15826/analitika.2020.24.4.003Z.A. Temerdashev1, T.A. Chervonnaya1, T.N. Musorina1, V.N. Bekhterev2Β 1Kuban State University, ul. Stavropolskaia, 149, Krasnodar, 350040, Russian Federation2 Sochi State University, ul. Plastunskaya, 94, Sochi,354000, Russian FederationΠžΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ исслСдований Π±Ρ‹Π»ΠΈ ΠΏΠΎΡ‡Π²Ρ‹ (Π˜ΠΌΠ΅Ρ€Π΅Ρ‚ΠΈΠ½ΡΠΊΠ°Ρ Π½ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΡΡ‚ΡŒ, Π³.Β Π‘ΠΎΡ‡ΠΈ), Ρ‚ΠΎΡ€Ρ„ (ООО Β«Π“Π΅Ρ€Π°Β», Россия), морскиС (Π’Π΅ΠΌΡ€ΡŽΠΊΡΠΊΠΈΠΉ Π·Π°Π»ΠΈΠ² Азовского моря) ΠΈ Ρ€Π΅Ρ‡Π½Ρ‹Π΅ Π΄ΠΎΠ½Π½Ρ‹Π΅ отлоТСния (ΠšΡƒΡ€Ρ‡Π°Π½ΡΠΊΠΈΠΉ Π»ΠΈΠΌΠ°Π½, Π’Π΅ΠΌΡ€ΡŽΠΊΡΠΊΠΈΠΉ Ρ€Π°ΠΉΠΎΠ½), пСсок (ΠΎ. Кайо Π ΠΎΠΌΠ°Π½ΠΎ, ΠšΡƒΠ±Π°). Π‘ использованиСм Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ экстракционного вымораТивания ΠΏΠΎΠ΄ дСйствиСм Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ±Π΅ΠΆΠ½Ρ‹Ρ… сил ΠΈΠ·ΡƒΡ‡Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ исслСдуСмых ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² для Π“Π₯-МБ-опрСдСлСния полицикличСских ароматичСских ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠ². ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ условия экстракции Π°Π½Π°Π»ΠΈΡ‚ΠΎΠ² смСсью Π°Ρ†Π΅Ρ‚ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° с Π²ΠΎΠ΄ΠΎΠΉ Π½Π° ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΏΠΎΡ‡Π² ΠΈ Π΄ΠΎΠ½Π½Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ. ΠžΠ±Ρ‰ΠΈΠΉ объСм экстракционной смСси составил 10 ΠΌΠ» ΠΏΡ€ΠΈ экстракционном Π²Ρ‹ΠΌΠΎΡ€Π°ΠΆΠΈΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠ΄ дСйствиСм Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ±Π΅ΠΆΠ½Ρ‹Ρ… сил ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΌΠΎΡ€ΠΎΠ·ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅Ρ€Ρ‹ (-28 ΠΎΠ‘), скорости вращСния Ρ€ΠΎΡ‚ΠΎΡ€Π° Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³ΠΈ 4000Β ΠΎΠ±/ΠΌΠΈΠ½ для навСски ΠΎΠ±Ρ€Π°Π·Ρ†Π° 1-2 Π³. Β«Π›Π΅Π³ΠΊΠΈΠ΅Β» ПАУ (Π½Π°Ρ„Ρ‚Π°Π»ΠΈΠ½, 2-ΠΌΠ΅Ρ‚ΠΈΠ»Π½Π°Ρ„Ρ‚Π°Π»ΠΈΠ½, Π°Ρ†Π΅Π½Π°Ρ„Ρ‚ΠΈΠ»Π΅Π½, Π±ΠΈΡ„Π΅Π½ΠΈΠ», Π°Ρ†Π΅Π½Π°Ρ„Ρ‚Π΅Π½, Ρ„Π»ΡƒΠΎΡ€Π΅Π½, Ρ„Π΅Π½Π°Π½Ρ‚Ρ€Π΅Π½, Π°Π½Ρ‚Ρ€Π°Ρ†Π΅Π½, Ρ„Π»ΡƒΠΎΡ€Π°Π½Ρ‚Π΅Π½ ΠΈ ΠΏΠΈΡ€Π΅Π½) эффСктивно извлСкались ΠΏΡ€ΠΈ 15 % Π°Ρ†Π΅Ρ‚ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° Π² экстракционной смСси с ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ ΠΈΡ… Π“Π₯-МБ-опрСдСлСния ΠΎΡ‚ 0.83 ΠΌΠΊΠ³/ΠΊΠ³ Π΄ΠΎ 0.92 ΠΌΠΊΠ³/ΠΊΠ³. Для ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π“Π₯-МБ-опрСдСлСния 20Β Β«Π»Π΅Π³ΠΊΠΈΡ…Β» ΠΈ «тяТСлых» ПАУ, концСнтрация Π°Ρ†Π΅Ρ‚ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° Π² экстракционной смСси Π΄ΠΎΠ»ΠΆΠ½Π° ΡΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 50 %. Π’ этих условиях ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ извлСчСния ΠΈΠ· ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° Β«Π»Π΅Π³ΠΊΠΈΡ…Β» ПАУ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π»Π° ΠΎΡ‚ 83 % Π΄ΠΎ 97 %, «тяТСлых» – ΠΎΡ‚ 61 % Π΄ΠΎ 92 %. Разработанная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° экспрСссна, позволяСт ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π°Π½Π°Π»ΠΈΡ‚ΠΎΠ² ΠΈ очистку экстрактов Π² ΠΎΠ΄Π½Ρƒ ΡΡ‚Π°Π΄ΠΈΡŽ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ ПАУ Π½ΠΈΠΆΠ΅ установлСнных ΠŸΠ”Πš для ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² исслСдования. ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ эффСктивности извлСчСния ΠΈ концСнтрирования ПАУ ΠΈΠ· ΠΏΠΎΡ‡Π² ΠΈ Π΄ΠΎΠ½Π½Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ сопоставили с извСстными Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°ΠΌΠΈ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ.ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ слова: полицикличСскиС ароматичСскиС ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Ρ‹, экстракционноС Π²Ρ‹ΠΌΠΎΡ€Π°ΠΆΠΈΠ²Π°Π½ΠΈΠ΅, ΠΏΠΎΡ‡Π²Ρ‹, Π΄ΠΎΠ½Π½Ρ‹Π΅ отлоТСния, хроматографичСский Π°Π½Π°Π»ΠΈΠ·DOI: http://dx.doi.org/10.15826/analitika.2020.24.4.003 DOI: http://dx.doi.org/10.15826/analitika.2020.24.4.003 Z.A. Temerdashev 1, T.A. Chervonnaya 1, T.N. Musorina 1, V.N. Bekhterev 2 1 Kuban State University, ul. Stavropolskaia, 149, Krasnodar, 350040, Russian Federation 2 Sochi State University, ul. Plastunskaya, 94, Sochi,354000, Russian Federatio

    Sample preparation of soils and bottom sediments for gas chromatography–mass spectrometry determination of PAHs

    Full text link
    ΠžΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ исслСдований Π±Ρ‹Π»ΠΈ ΠΏΠΎΡ‡Π²Ρ‹ (Π˜ΠΌΠ΅Ρ€Π΅Ρ‚ΠΈΠ½ΡΠΊΠ°Ρ Π½ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΡΡ‚ΡŒ, Π³. Π‘ΠΎΡ‡ΠΈ), Ρ‚ΠΎΡ€Ρ„ (ООО Β«Π“Π΅Ρ€Π°Β», Россия), морскиС (Π’Π΅ΠΌΡ€ΡŽΠΊΡΠΊΠΈΠΉ Π·Π°Π»ΠΈΠ² Азовского моря) ΠΈ Ρ€Π΅Ρ‡Π½Ρ‹Π΅ Π΄ΠΎΠ½Π½Ρ‹Π΅ отлоТСния (ΠšΡƒΡ€Ρ‡Π°Π½ΡΠΊΠΈΠΉ Π»ΠΈΠΌΠ°Π½, Π’Π΅ΠΌΡ€ΡŽΠΊΡΠΊΠΈΠΉ Ρ€Π°ΠΉΠΎΠ½), пСсок (ΠΎ. Кайо Π ΠΎΠΌΠ°Π½ΠΎ, ΠšΡƒΠ±Π°). Π‘ использованиСм Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ экстракционного вымораТивания ΠΏΠΎΠ΄ дСйствиСм Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ±Π΅ΠΆΠ½Ρ‹Ρ… сил ΠΈΠ·ΡƒΡ‡Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ исслСдуСмых ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² для Π“Π₯-МБ-опрСдСлСния полицикличСских ароматичСских ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠ². ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ условия экстракции Π°Π½Π°Π»ΠΈΡ‚ΠΎΠ² смСсью Π°Ρ†Π΅Ρ‚ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° с Π²ΠΎΠ΄ΠΎΠΉ Π½Π° ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΏΠΎΡ‡Π² ΠΈ Π΄ΠΎΠ½Π½Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ. ΠžΠ±Ρ‰ΠΈΠΉ объСм экстракционной смСси составил 10 ΠΌΠ» ΠΏΡ€ΠΈ экстракционном Π²Ρ‹ΠΌΠΎΡ€Π°ΠΆΠΈΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠ΄ дСйствиСм Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ±Π΅ΠΆΠ½Ρ‹Ρ… сил ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΌΠΎΡ€ΠΎΠ·ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅Ρ€Ρ‹ (-28 ΠΎΠ‘), скорости вращСния Ρ€ΠΎΡ‚ΠΎΡ€Π° Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³ΠΈ 4000 ΠΎΠ±/ΠΌΠΈΠ½ для навСски ΠΎΠ±Ρ€Π°Π·Ρ†Π° 1-2 Π³. Β«Π›Π΅Π³ΠΊΠΈΠ΅Β» ПАУ (Π½Π°Ρ„Ρ‚Π°Π»ΠΈΠ½, 2-ΠΌΠ΅Ρ‚ΠΈΠ»Π½Π°Ρ„Ρ‚Π°Π»ΠΈΠ½, Π°Ρ†Π΅Π½Π°Ρ„Ρ‚ΠΈΠ»Π΅Π½, Π±ΠΈΡ„Π΅Π½ΠΈΠ», Π°Ρ†Π΅Π½Π°Ρ„Ρ‚Π΅Π½, Ρ„Π»ΡƒΠΎΡ€Π΅Π½, Ρ„Π΅Π½Π°Π½Ρ‚Ρ€Π΅Π½, Π°Π½Ρ‚Ρ€Π°Ρ†Π΅Π½, Ρ„Π»ΡƒΠΎΡ€Π°Π½Ρ‚Π΅Π½ ΠΈ ΠΏΠΈΡ€Π΅Π½) эффСктивно извлСкались ΠΏΡ€ΠΈ 15 % Π°Ρ†Π΅Ρ‚ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° Π² экстракционной смСси с ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ ΠΈΡ… Π“Π₯-МБ-опрСдСлСния ΠΎΡ‚ 0.83 ΠΌΠΊΠ³/ΠΊΠ³ Π΄ΠΎ 0.92 ΠΌΠΊΠ³/ΠΊΠ³. Для ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π“Π₯-МБ-опрСдСлСния 20 Β«Π»Π΅Π³ΠΊΠΈΡ…Β» ΠΈ «тяТСлых» ПАУ, концСнтрация Π°Ρ†Π΅Ρ‚ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° Π² экстракционной смСси Π΄ΠΎΠ»ΠΆΠ½Π° ΡΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 50 %. Π’ этих условиях ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ извлСчСния ΠΈΠ· ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° Β«Π»Π΅Π³ΠΊΠΈΡ…Β» ПАУ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π»Π° ΠΎΡ‚ 83 % Π΄ΠΎ 97 %, «тяТСлых» – ΠΎΡ‚ 61 % Π΄ΠΎ 92 %. Разработанная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° экспрСссна, позволяСт ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π°Π½Π°Π»ΠΈΡ‚ΠΎΠ² ΠΈ очистку экстрактов Π² ΠΎΠ΄Π½Ρƒ ΡΡ‚Π°Π΄ΠΈΡŽ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ ПАУ Π½ΠΈΠΆΠ΅ установлСнных ΠŸΠ”Πš для ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² исслСдования. ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ эффСктивности извлСчСния ΠΈ концСнтрирования ПАУ ΠΈΠ· ΠΏΠΎΡ‡Π² ΠΈ Π΄ΠΎΠ½Π½Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ сопоставили с извСстными Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°ΠΌΠΈ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ.Polycyclic aromatic hydrocarbons (PAHs) are a class of compounds which have been known to be carcinogenic, teratogenic and mutagenic as well as act as pollutants of environmental objects. The determination of PAHs in complex matrices is difficult, and it is very important to use an efficient sample pretreatment technique. A sample preparation technique was developed involving extractive freezing-out and centrifugation of the samples for the determination of polycyclic aromatic hydrocarbons (PAHs) in soils and bottom sediments using gas chromatography – mass spectrometry (GC–MS). Sochi soils (The Imereti Lowlands), turf, sea bottom sediments (Azov Sea, The Temryuk Bay), river bottom sediment (Kurchansky estuary) and Caio Romano (Cuba) island sand were selected as the objects for the research. Soils and bottom sediments which contained no determined PAHs were used as model samples. The conditions of sample preparation have been optimized, and the extraction effects of acetonitrile with water on the PAHs recoveries have been investigated. It was found that for the determination of the compounds consisting from two to four fused aromatic rings such as naphthalene, 2-methylnaphthalene, acenaphthylene, biphenyl, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene, the extraction occurred when the extractive mixture contained 15% acetonitrile. The proposed method detection limits of individual compounds ranged from 0.83 to 0.92 Β΅g/kg. The extractive mixture containing 50% acetonitrile was proposed for the determination of 20 PAHs such as naphthalene, 2-methylnaphthalene, acenaphthene, biphenyl, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, triphenylene, benz[b]fluoranthene, benz[k]fluoranthene, benz[e]pyrene, benz[a]pyrene, indene[1,2,3–c,d]pyrene, dibenz[a,h]anthracene, benz[g,h,i]perylene. The extraction of PAHs in these conditions demonstrated the recoveries from 61% to 97%. As matter of fact, the lower recoveries of PAHs, that contained four or more fused aromatic rings, have been caused by the sorption in the cracks of the solid aqueous phase. The extraction, clear-up of extract and concentration were realized as one step of the sample pretreatment. As a result, the rapid and express technique of the sample preparation with combined GC-MS were proposed for the PAHs determination in soils and bottom sediments. This method’s limits of individual PAHs quantitation ranged from 1 to 5 Β΅g/kg, and these were lower that the maximum permissible concentration.ИсслСдования ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… выполнСния Π³Ρ€Π°Π½Ρ‚Π° РЀЀИ (β„– 19-43-230003 Ρ€_Π°) с использованиСм Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ оборудования ЦКП β€œΠ­ΠΊΠΎΠ»ΠΎΠ³ΠΎ-аналитичСский цСнтр” ΠšΡƒΠ±Π°Π½ΡΠΊΠΎΠ³ΠΎ госунивСрситСта.Current work was funded by RFBR according to the research project (β„– 19-43-230003 Ρ€_Π°). The scientific equipment of β€œEcological and Analytical Center” of the Kuban State University was used

    First beam from the DECRIS 14-2m ion source for Slovak Republic

    No full text
    The ECR laboratory of the Cyclotron Centrum of Slovak Republic (CC SR) in Bratislava, Slovakia, consists of the DECRIS 14-2m ion source and two low energy channels. It is a complete injector, consisting of an ECR ion source, focusing and steering elements, an analyzing magnet, a vacuum system, and an ion beam diagnostic system. The DECRIS 14-2m ion source is a multiply charged heavy ion source based on the electron cyclotron resonance principle. The ECR ion source DECRIS 14-2m and other system have been designed and manufactured at the FLNR JINR. The preliminary testing (magnetic field measurements, vacuum testing and testing of ECR ion source) has been performed at FLNR JINR. The final assembly of the DECRIS 14-2m will be done at the CC SR in Bratislava
    corecore