50 research outputs found
APPLICATION OF βMOODLEβ E-LEARNING SYSTEM IN TEACHING LANGUAGE FOR SPECIFIC PURPOSES
The article presents the development experience of online computer-assisted learning package based on modular object-oriented dynamic learning environment (MOODLE) that is designed to teach a foreign language for specific purposes in non-linguistic university. The developed package allows enhancing the teaching process by creating optimal conditions to realize the principles of teaching differentiation and individualization and also by stimulating the studentsβ motivation to learn the language through various methods and kinds of teaching tasks
ΠΠ ΠΠΠΠΠΠΠΠΠ’ΠΠΠΠ ΠΠΠ§Π Π ΠΠΠΠΠ«Π₯ ΠΠ’ΠΠΠΠΠΠΠ Π‘ ΠΠ‘ΠΠΠΠ¬ΠΠΠΠΠΠΠΠ Π’ΠΠ₯ΠΠΠΠ ΠΠΠ‘Π’Π ΠΠΠ¦ΠΠΠΠΠΠΠ ΠΠ«ΠΠΠ ΠΠΠΠΠΠΠΠ― ΠΠ Π Π₯Π ΠΠΠΠ’ΠΠΠΠ‘Π‘-Π‘ΠΠΠΠ’Π ΠΠΠΠ’Π ΠΠ§ΠΠ‘ΠΠΠ ΠΠΠ ΠΠΠΠΠΠΠΠ ΠΠΠ£
Polycyclic aromatic hydrocarbons (PAHs) are a class of compounds which have been known to be carcinogenic, teratogenic and mutagenic as well as act as pollutants of environmental objects. The determination of PAHs in complex matrices is difficult, and it is very important to use an efficient sample pretreatment technique.Β A sample preparation technique was developed involving extractive freezing-out and centrifugation of the samples for the determination of polycyclic aromatic hydrocarbons (PAHs) in soils and bottom sediments using gas chromatography β mass spectrometry (GCβMS). Sochi soils (The Imereti Lowlands), turf, sea bottom sediments (Azov Sea, The Temryuk Bay), river bottom sediment (Kurchansky estuary) and Caio Romano (Cuba) island sand were selected as the objects for the research. Soils and bottom sediments which contained no determined PAHs were used as model samples. The conditions of sample preparation have been optimized, and the extraction effects of acetonitrile with water on the PAHs recoveries have been investigated.Β It was found that for the determination of the compounds consisting from two to four fused aromatic rings such as naphthalene, 2-methylnaphthalene,Β acenaphthylene, biphenyl, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene, the extraction occurred when the extractive mixture contained 15% acetonitrile. The proposed method detection limits of individual compounds ranged from 0.83 to 0.92 Β΅g/kg. The extractive mixture containing 50% acetonitrile was proposed for the determination of 20 PAHs such as naphthalene, 2-methylnaphthalene, acenaphthene, biphenyl, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, triphenylene, benz[b]fluoranthene, benz[k]fluoranthene, benz[e]pyrene, benz[a]pyrene, indene[1,2,3βc,d]pyrene, dibenz[a,h]anthracene, benz[g,h,i]perylene. The extraction of PAHs in these conditions demonstrated the recoveries from 61% to 97%. As matter of fact, the lower recoveries of PAHs, that contained four or more fused aromatic rings, have been caused by the sorption in the cracks of the solid aqueous phase. The extraction, clear-up of extract and concentration were realized as one step of the sample pretreatment. As a result, the rapid and express technique of the sample preparation with combined GC-MS were proposed for the PAHs determination in soils and bottom sediments. This methodβs limits of individual PAHs quantitation ranged from 1 to 5 Β΅g/kg, and these were lower that the maximum permissible concentration.KeyΒ words:Β polycyclicΒ aromaticΒ hydrocarbons, extractive freezing-out, soils, bottom sediments, chromatography analysis.DOI: http://dx.doi.org/10.15826/analitika.2020.24.4.003Z.A. Temerdashev1, T.A. Chervonnaya1, T.N. Musorina1, V.N. Bekhterev2Β 1Kuban State University, ul. Stavropolskaia, 149, Krasnodar, 350040, Russian Federation2 Sochi State University, ul. Plastunskaya, 94, Sochi,354000, Russian FederationΠΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π±ΡΠ»ΠΈ ΠΏΠΎΡΠ²Ρ (ΠΠΌΠ΅ΡΠ΅ΡΠΈΠ½ΡΠΊΠ°Ρ Π½ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΡΡΡ, Π³.Β Π‘ΠΎΡΠΈ), ΡΠΎΡΡ (ΠΠΠ Β«ΠΠ΅ΡΠ°Β», Π ΠΎΡΡΠΈΡ), ΠΌΠΎΡΡΠΊΠΈΠ΅ (Π’Π΅ΠΌΡΡΠΊΡΠΊΠΈΠΉ Π·Π°Π»ΠΈΠ² ΠΠ·ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΡΡ) ΠΈ ΡΠ΅ΡΠ½ΡΠ΅ Π΄ΠΎΠ½Π½ΡΠ΅ ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ (ΠΡΡΡΠ°Π½ΡΠΊΠΈΠΉ Π»ΠΈΠΌΠ°Π½, Π’Π΅ΠΌΡΡΠΊΡΠΊΠΈΠΉ ΡΠ°ΠΉΠΎΠ½), ΠΏΠ΅ΡΠΎΠΊ (ΠΎ. ΠΠ°ΠΉΠΎ Π ΠΎΠΌΠ°Π½ΠΎ, ΠΡΠ±Π°). Π‘ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ΅Ρ
Π½ΠΈΠΊΠΈ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π²ΡΠΌΠΎΡΠ°ΠΆΠΈΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠ΅Π½ΡΡΠΎΠ±Π΅ΠΆΠ½ΡΡ
ΡΠΈΠ» ΠΈΠ·ΡΡΠ΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π΄Π»Ρ ΠΠ₯-ΠΠ‘-ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΡ
Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡΠΎΠ΄ΠΎΠ². ΠΠΏΡΠΈΠΌΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΈ Π°Π½Π°Π»ΠΈΡΠΎΠ² ΡΠΌΠ΅ΡΡΡ Π°ΡΠ΅ΡΠΎΠ½ΠΈΡΡΠΈΠ»Π° Ρ Π²ΠΎΠ΄ΠΎΠΉ Π½Π° ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
ΠΏΠΎΡΠ² ΠΈ Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ. ΠΠ±ΡΠΈΠΉ ΠΎΠ±ΡΠ΅ΠΌ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ ΡΠΎΡΡΠ°Π²ΠΈΠ» 10 ΠΌΠ» ΠΏΡΠΈ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΌ Π²ΡΠΌΠΎΡΠ°ΠΆΠΈΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠ΅Π½ΡΡΠΎΠ±Π΅ΠΆΠ½ΡΡ
ΡΠΈΠ» ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ ΠΌΠΎΡΠΎΠ·ΠΈΠ»ΡΠ½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅ΡΡ (-28 ΠΎΠ‘), ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠΎΡΠΎΡΠ° ΡΠ΅Π½ΡΡΠΈΡΡΠ³ΠΈ 4000Β ΠΎΠ±/ΠΌΠΈΠ½ Π΄Π»Ρ Π½Π°Π²Π΅ΡΠΊΠΈ ΠΎΠ±ΡΠ°Π·ΡΠ° 1-2 Π³. Β«ΠΠ΅Π³ΠΊΠΈΠ΅Β» ΠΠΠ£ (Π½Π°ΡΡΠ°Π»ΠΈΠ½, 2-ΠΌΠ΅ΡΠΈΠ»Π½Π°ΡΡΠ°Π»ΠΈΠ½, Π°ΡΠ΅Π½Π°ΡΡΠΈΠ»Π΅Π½, Π±ΠΈΡΠ΅Π½ΠΈΠ», Π°ΡΠ΅Π½Π°ΡΡΠ΅Π½, ΡΠ»ΡΠΎΡΠ΅Π½, ΡΠ΅Π½Π°Π½ΡΡΠ΅Π½, Π°Π½ΡΡΠ°ΡΠ΅Π½, ΡΠ»ΡΠΎΡΠ°Π½ΡΠ΅Π½ ΠΈ ΠΏΠΈΡΠ΅Π½) ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΈΠ·Π²Π»Π΅ΠΊΠ°Π»ΠΈΡΡ ΠΏΡΠΈ 15 % Π°ΡΠ΅ΡΠΎΠ½ΠΈΡΡΠΈΠ»Π° Π² ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ Ρ ΠΏΡΠ΅Π΄Π΅Π»Π°ΠΌΠΈ ΠΈΡ
ΠΠ₯-ΠΠ‘-ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΡ 0.83 ΠΌΠΊΠ³/ΠΊΠ³ Π΄ΠΎ 0.92 ΠΌΠΊΠ³/ΠΊΠ³. ΠΠ»Ρ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΠ₯-ΠΠ‘-ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ 20Β Β«Π»Π΅Π³ΠΊΠΈΡ
Β» ΠΈ Β«ΡΡΠΆΠ΅Π»ΡΡ
Β» ΠΠΠ£, ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ Π°ΡΠ΅ΡΠΎΠ½ΠΈΡΡΠΈΠ»Π° Π² ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ Π΄ΠΎΠ»ΠΆΠ½Π° ΡΠΎΡΡΠ°Π²Π»ΡΡΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 50 %. Π ΡΡΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΡΠ΅ΠΏΠ΅Π½Ρ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΈΠ· ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° Β«Π»Π΅Π³ΠΊΠΈΡ
Β» ΠΠΠ£ Π²Π°ΡΡΠΈΡΠΎΠ²Π°Π»Π° ΠΎΡ 83 % Π΄ΠΎ 97 %, Β«ΡΡΠΆΠ΅Π»ΡΡ
Β» β ΠΎΡ 61 % Π΄ΠΎ 92 %. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠΊΡΠΏΡΠ΅ΡΡΠ½Π°, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ Π°Π½Π°Π»ΠΈΡΠΎΠ² ΠΈ ΠΎΡΠΈΡΡΠΊΡ ΡΠΊΡΡΡΠ°ΠΊΡΠΎΠ² Π² ΠΎΠ΄Π½Ρ ΡΡΠ°Π΄ΠΈΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΠΠ£ Π½ΠΈΠΆΠ΅ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΡ
ΠΠΠ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½Π½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠΠ£ ΠΈΠ· ΠΏΠΎΡΠ² ΠΈ Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ ΠΏΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΡΠΎΠΏΠΎΡΡΠ°Π²ΠΈΠ»ΠΈ Ρ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌΠΈ Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΡΠΌΠΈ Π²Π°ΡΠΈΠ°Π½ΡΠ°ΠΌΠΈ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΡ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ.ΠΠ»ΡΡΠ΅Π²ΡΠ΅ ΡΠ»ΠΎΠ²Π°: ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Ρ, ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ΅ Π²ΡΠΌΠΎΡΠ°ΠΆΠΈΠ²Π°Π½ΠΈΠ΅, ΠΏΠΎΡΠ²Ρ, Π΄ΠΎΠ½Π½ΡΠ΅ ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ, Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ·DOI: http://dx.doi.org/10.15826/analitika.2020.24.4.003 DOI: http://dx.doi.org/10.15826/analitika.2020.24.4.003 Z.A. Temerdashev 1, T.A. Chervonnaya 1, T.N. Musorina 1, V.N. Bekhterev 2 1 Kuban State University, ul. Stavropolskaia, 149, Krasnodar, 350040, Russian Federation 2 Sochi State University, ul. Plastunskaya, 94, Sochi,354000, Russian Federatio
Upgrading of the CAPRICE type ECR ion source
The CAPRICE-type ECR ion source mVINIS has been upgraded by increasing its magnetic field to improve a plasma confinement and thereby enhance the source performance. This modification made it also possible to increase the internal diameter of the plasma chamber and to replace the coaxial microwave input by a waveguide. Some major subsystems such as: the vacuum system, the microwave system, the gas inlet system, the solid substance inlet system, and the control system have been also refurbished. All these improvements have resulted in a substantial increase of ion beam currents, especially in the case of high charge states, with the operation of the ion source proven to be stable and reproducible. This modification can be applied to other CAPRICE-type ion sources. Β© 2018 Author(s).17th International Conference on Ion Sources 2018; Geneva's International Conference Centre Geneva; Switzerland; 15 September 2017 through 20 September 2017; Code 13992
Sample preparation of soils and bottom sediments for gas chromatographyβmass spectrometry determination of PAHs
ΠΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π±ΡΠ»ΠΈ ΠΏΠΎΡΠ²Ρ (ΠΠΌΠ΅ΡΠ΅ΡΠΈΠ½ΡΠΊΠ°Ρ Π½ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΡΡΡ, Π³. Π‘ΠΎΡΠΈ), ΡΠΎΡΡ (ΠΠΠ Β«ΠΠ΅ΡΠ°Β», Π ΠΎΡΡΠΈΡ), ΠΌΠΎΡΡΠΊΠΈΠ΅ (Π’Π΅ΠΌΡΡΠΊΡΠΊΠΈΠΉ Π·Π°Π»ΠΈΠ² ΠΠ·ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΡΡ) ΠΈ ΡΠ΅ΡΠ½ΡΠ΅ Π΄ΠΎΠ½Π½ΡΠ΅ ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ (ΠΡΡΡΠ°Π½ΡΠΊΠΈΠΉ Π»ΠΈΠΌΠ°Π½, Π’Π΅ΠΌΡΡΠΊΡΠΊΠΈΠΉ ΡΠ°ΠΉΠΎΠ½), ΠΏΠ΅ΡΠΎΠΊ (ΠΎ. ΠΠ°ΠΉΠΎ Π ΠΎΠΌΠ°Π½ΠΎ, ΠΡΠ±Π°). Π‘ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ΅Ρ
Π½ΠΈΠΊΠΈ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π²ΡΠΌΠΎΡΠ°ΠΆΠΈΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠ΅Π½ΡΡΠΎΠ±Π΅ΠΆΠ½ΡΡ
ΡΠΈΠ» ΠΈΠ·ΡΡΠ΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π΄Π»Ρ ΠΠ₯-ΠΠ‘-ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΡ
Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡΠΎΠ΄ΠΎΠ². ΠΠΏΡΠΈΠΌΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΈ Π°Π½Π°Π»ΠΈΡΠΎΠ² ΡΠΌΠ΅ΡΡΡ Π°ΡΠ΅ΡΠΎΠ½ΠΈΡΡΠΈΠ»Π° Ρ Π²ΠΎΠ΄ΠΎΠΉ Π½Π° ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
ΠΏΠΎΡΠ² ΠΈ Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ. ΠΠ±ΡΠΈΠΉ ΠΎΠ±ΡΠ΅ΠΌ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ ΡΠΎΡΡΠ°Π²ΠΈΠ» 10 ΠΌΠ» ΠΏΡΠΈ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΌ Π²ΡΠΌΠΎΡΠ°ΠΆΠΈΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠ΅Π½ΡΡΠΎΠ±Π΅ΠΆΠ½ΡΡ
ΡΠΈΠ» ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ ΠΌΠΎΡΠΎΠ·ΠΈΠ»ΡΠ½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅ΡΡ (-28 ΠΎΠ‘), ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠΎΡΠΎΡΠ° ΡΠ΅Π½ΡΡΠΈΡΡΠ³ΠΈ 4000 ΠΎΠ±/ΠΌΠΈΠ½ Π΄Π»Ρ Π½Π°Π²Π΅ΡΠΊΠΈ ΠΎΠ±ΡΠ°Π·ΡΠ° 1-2 Π³. Β«ΠΠ΅Π³ΠΊΠΈΠ΅Β» ΠΠΠ£ (Π½Π°ΡΡΠ°Π»ΠΈΠ½, 2-ΠΌΠ΅ΡΠΈΠ»Π½Π°ΡΡΠ°Π»ΠΈΠ½, Π°ΡΠ΅Π½Π°ΡΡΠΈΠ»Π΅Π½, Π±ΠΈΡΠ΅Π½ΠΈΠ», Π°ΡΠ΅Π½Π°ΡΡΠ΅Π½, ΡΠ»ΡΠΎΡΠ΅Π½, ΡΠ΅Π½Π°Π½ΡΡΠ΅Π½, Π°Π½ΡΡΠ°ΡΠ΅Π½, ΡΠ»ΡΠΎΡΠ°Π½ΡΠ΅Π½ ΠΈ ΠΏΠΈΡΠ΅Π½) ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΈΠ·Π²Π»Π΅ΠΊΠ°Π»ΠΈΡΡ ΠΏΡΠΈ 15 % Π°ΡΠ΅ΡΠΎΠ½ΠΈΡΡΠΈΠ»Π° Π² ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ Ρ ΠΏΡΠ΅Π΄Π΅Π»Π°ΠΌΠΈ ΠΈΡ
ΠΠ₯-ΠΠ‘-ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΡ 0.83 ΠΌΠΊΠ³/ΠΊΠ³ Π΄ΠΎ 0.92 ΠΌΠΊΠ³/ΠΊΠ³. ΠΠ»Ρ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΠ₯-ΠΠ‘-ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ 20 Β«Π»Π΅Π³ΠΊΠΈΡ
Β» ΠΈ Β«ΡΡΠΆΠ΅Π»ΡΡ
Β» ΠΠΠ£, ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ Π°ΡΠ΅ΡΠΎΠ½ΠΈΡΡΠΈΠ»Π° Π² ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ Π΄ΠΎΠ»ΠΆΠ½Π° ΡΠΎΡΡΠ°Π²Π»ΡΡΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 50 %. Π ΡΡΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΡΠ΅ΠΏΠ΅Π½Ρ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΈΠ· ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° Β«Π»Π΅Π³ΠΊΠΈΡ
Β» ΠΠΠ£ Π²Π°ΡΡΠΈΡΠΎΠ²Π°Π»Π° ΠΎΡ 83 % Π΄ΠΎ 97 %, Β«ΡΡΠΆΠ΅Π»ΡΡ
Β» β ΠΎΡ 61 % Π΄ΠΎ 92 %. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠΊΡΠΏΡΠ΅ΡΡΠ½Π°, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ Π°Π½Π°Π»ΠΈΡΠΎΠ² ΠΈ ΠΎΡΠΈΡΡΠΊΡ ΡΠΊΡΡΡΠ°ΠΊΡΠΎΠ² Π² ΠΎΠ΄Π½Ρ ΡΡΠ°Π΄ΠΈΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΠΠ£ Π½ΠΈΠΆΠ΅ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΡ
ΠΠΠ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½Π½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠΠ£ ΠΈΠ· ΠΏΠΎΡΠ² ΠΈ Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ ΠΏΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΡΠΎΠΏΠΎΡΡΠ°Π²ΠΈΠ»ΠΈ Ρ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌΠΈ Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΡΠΌΠΈ Π²Π°ΡΠΈΠ°Π½ΡΠ°ΠΌΠΈ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΡ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ.Polycyclic aromatic hydrocarbons (PAHs) are a class of compounds which have been known to be carcinogenic, teratogenic and mutagenic as well as act as pollutants of environmental objects. The determination of PAHs in complex matrices is difficult, and it is very important to use an efficient sample pretreatment technique. A sample preparation technique was developed involving extractive freezing-out and centrifugation of the samples for the determination of polycyclic aromatic hydrocarbons (PAHs) in soils and bottom sediments using gas chromatography β mass spectrometry (GCβMS). Sochi soils (The Imereti Lowlands), turf, sea bottom sediments (Azov Sea, The Temryuk Bay), river bottom sediment (Kurchansky estuary) and Caio Romano (Cuba) island sand were selected as the objects for the research. Soils and bottom sediments which contained no determined PAHs were used as model samples. The conditions of sample preparation have been optimized, and the extraction effects of acetonitrile with water on the PAHs recoveries have been investigated. It was found that for the determination of the compounds consisting from two to four fused aromatic rings such as naphthalene, 2-methylnaphthalene, acenaphthylene, biphenyl, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene, the extraction occurred when the extractive mixture contained 15% acetonitrile. The proposed method detection limits of individual compounds ranged from 0.83 to 0.92 Β΅g/kg. The extractive mixture containing 50% acetonitrile was proposed for the determination of 20 PAHs such as naphthalene, 2-methylnaphthalene, acenaphthene, biphenyl, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, triphenylene, benz[b]fluoranthene, benz[k]fluoranthene, benz[e]pyrene, benz[a]pyrene, indene[1,2,3βc,d]pyrene, dibenz[a,h]anthracene, benz[g,h,i]perylene. The extraction of PAHs in these conditions demonstrated the recoveries from 61% to 97%. As matter of fact, the lower recoveries of PAHs, that contained four or more fused aromatic rings, have been caused by the sorption in the cracks of the solid aqueous phase. The extraction, clear-up of extract and concentration were realized as one step of the sample pretreatment. As a result, the rapid and express technique of the sample preparation with combined GC-MS were proposed for the PAHs determination in soils and bottom sediments. This methodβs limits of individual PAHs quantitation ranged from 1 to 5 Β΅g/kg, and these were lower that the maximum permissible concentration.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ
Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Π³ΡΠ°Π½ΡΠ° Π Π€Π€Π (β 19-43-230003 Ρ_Π°) Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΡ Π¦ΠΠ βΠΠΊΠΎΠ»ΠΎΠ³ΠΎ-Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅Π½ΡΡβ ΠΡΠ±Π°Π½ΡΠΊΠΎΠ³ΠΎ Π³ΠΎΡΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠ°.Current work was funded by RFBR according to the research project (β 19-43-230003 Ρ_Π°). The scientific equipment of βEcological and Analytical Centerβ of the Kuban State University was used