371 research outputs found
Improving the Accuracy of Baha® Fittings through Measures of Direct Bone Conduction
ObjectivesVariability in Baha® sound processor fittings may arise from the nature of the implant-to-bone transmission as well as transcranial attenuation for patients with single-sided sensorineural deafness (SSD). One method of improving the predictability of Baha fittings is to measure the individual patient's actual bone conduction thresholds, thereby removing the influences of skin thickness and/or the implant location site.MethodsTwenty adult wearers of the Baha bone conduction implant system participated in the study. Direct bone conduction thresholds were obtained through the BC Direct function of the Baha Fitting Software combined with the Cochlear Baha BP100 sound processor. For comparison, the masked and unmasked bone conduction responses of the patients were collected through standard audiometric testing techniques. Test-retest reliability measurement was performed for all participants. Data for each frequency and frequency range were analyzed separately.ResultsThe results confirm the improved transmission of sound through the implant rather than transcutaneously through the skin. On average, the BC Direct thresholds were closer to the patient's unmasked thresholds than the masked values. In subjects with SSD, BC Direct results were poorer than contra-lateral bone conduction thresholds, most likely due to transcranial attenuation. The test-retest reliability for the BC Direct measurements was within +/-5 dB. The comparison of preferred amplification, based on direct bone conduction or bone conduction audiometry, found higher agreement for fittings based on direct bone conduction measurements.ConclusionWhile the transfer function between the implant and the skin can be predicted on average, there are a number of patients for whom measurement is essential to determine the required amplification. These were patients with: 1) SSD, 2) asymmetrical hearing loss, 3) unusual implant location or skull formation, and 4) users of Testband or Softband. The result for the clinician is that a fitting can take place with less fine-tuning and a greater understanding of the variability of bone conducted sound transmission
Energy extraction from the biologic battery in the inner ear
Endocochlear potential (EP) is a battery-like electrochemical gradient found in and actively maintained by the inner ear [superscript 1, 2]. Here we demonstrate that the mammalian EP can be used as a power source for electronic devices. We achieved this by designing an anatomically sized, ultra-low quiescent-power energy harvester chip integrated with a wireless sensor capable of monitoring the EP itself. Although other forms of in vivo energy harvesting have been described in lower organisms [superscript 3, 4, 5], and thermoelectric [superscript 6], piezoelectric [superscript 7] and biofuel [superscript 8, 9] devices are promising for mammalian applications, there have been few, if any, in vivo demonstrations in the vicinity of the ear, eye and brain. In this work, the chip extracted a minimum of 1.12 nW from the EP of a guinea pig for up to 5 h, enabling a 2.4 GHz radio to transmit measurement of the EP every 40–360 s. With future optimization of electrode design, we envision using the biologic battery in the inner ear to power chemical and molecular sensors, or drug-delivery actuators for diagnosis and therapy of hearing loss and other disorders.Focus Center Research Program. Focus Center for Circuit & System Solutions. Semiconductor Research Corporation. Interconnect Focus CenterNational Institutes of Health (U.S.) (Grant K08 DC010419)National Institutes of Health (U.S.) (Grant T32 DC00038)Bertarelli Foundatio
Effect of frequency difference on sensitivity of beats perception
Two vibrations with slightly different frequencies induce the beats phenomenon. In tactile perception, when two pins of different frequencies stimulate the fingertips, an individual perceives a beats caused by a summation stimulus of the two vibrations. The present study demonstrates experimentally that humans can perceive another vibration based on the beats phenomenon when two tactile stimuli with slightly different frequencies are stimulated on the finger pad with a small contactor in different locations at the same time. Moreover, we examined the amplitude of the detection threshold to be able to perceive beats phenomenon on the index finger with 5 carrier frequency (63.1, 100, 158.5, 251.2, and 398.1 Hz) and 4 beats frequency (2.5, 3.98, 6.31, and 10 Hz) when two stimuli 1 mm distance apart are vibrated at a slightly different frequency. From the experiments, it is concluded that the amplitude threshold to be able to perceive beats decreases as the standard frequency increases under 398 Hz. Furthermore, from comparing the absolute detection threshold and beats detection threshold, as the carrier frequency increases, the required amplitude at two pins for the detection of beats decreases compared to absolute vibration
Interaction of perceptual grouping and crossmodal temporal capture in tactile apparent-motion
Previous studies have shown that in tasks requiring participants to report the direction of apparent motion, task-irrelevant mono-beeps can "capture'' visual motion perception when the beeps occur temporally close to the visual stimuli. However, the contributions of the relative timing of multimodal events and the event structure, modulating uni- and/or crossmodal perceptual grouping, remain unclear. To examine this question and extend the investigation to the tactile modality, the current experiments presented tactile two-tap apparent-motion streams, with an SOA of 400 ms between successive, left-/right-hand middle-finger taps, accompanied by task-irrelevant, non-spatial auditory stimuli. The streams were shown for 90 seconds, and participants' task was to continuously report the perceived (left-or rightward) direction of tactile motion. In Experiment 1, each tactile stimulus was paired with an auditory beep, though odd-numbered taps were paired with an asynchronous beep, with audiotactile SOAs ranging from -75 ms to 75 ms. Perceived direction of tactile motion varied systematically with audiotactile SOA, indicative of a temporal-capture effect. In Experiment 2, two audiotactile SOAs-one short (75 ms), one long (325 ms)-were compared. The long-SOA condition preserved the crossmodal event structure (so the temporal-capture dynamics should have been similar to that in Experiment 1), but both beeps now occurred temporally close to the taps on one side (even-numbered taps). The two SOAs were found to produce opposite modulations of apparent motion, indicative of an influence of crossmodal grouping. In Experiment 3, only odd-numbered, but not even-numbered, taps were paired with auditory beeps. This abolished the temporal-capture effect and, instead, a dominant percept of apparent motion from the audiotactile side to the tactile-only side was observed independently of the SOA variation. These findings suggest that asymmetric crossmodal grouping leads to an attentional modulation of apparent motion, which inhibits crossmodal temporal-capture effects
MLP: a MATLAB toolbox for rapid and reliable auditory threshold estimation
In this paper, we present MLP, a MATLAB toolbox enabling auditory
thresholds estimation via the adaptive Maximum Likelihood procedure proposed
by David Green (1990, 1993). This adaptive procedure is particularly appealing for
those psychologists that need to estimate thresholds with a good degree of accuracy
and in a short time. Together with a description of the toolbox, the current text
provides an introduction to the threshold estimation theory and a theoretical
explanation of the maximum likelihood adaptive procedure. MLP comes with a
graphical interface and it is provided with several built-in, classic psychoacoustics
experiments ready to use at a mouse click
Correlating the site of tympanic membrane perforation with Hearing loss
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Importance of spike timing in touch: an analogy with hearing?
Touch is often conceived as a spatial sense akin to vision. However, touch also involves the transduction and processing of signals that vary rapidly over time, inviting comparisons with hearing. In both sensory systems, first order afferents produce spiking responses that are temporally precise and the timing of their responses carries stimulus information. The precision and informativeness of spike timing in the two systems invites the possibility that both implement similar mechanisms to extract behaviorally relevant information from these precisely timed responses. Here, we explore the putative roles of spike timing in touch and hearing and discuss common mechanisms that may be involved in processing temporal spiking patterns
Multisensory and Motor Representations in Rat Oral Somatosensory Cortex
Abstract In mammals, a complex array of oral sensors assess the taste, temperature and haptic properties of food. Although the representation of taste has been extensively studied in the gustatory cortex, it is unclear how the somatosensory cortex encodes information about the properties of oral stimuli. Moreover, it is poorly understood how different oral sensory modalities are integrated and how sensory responses are translated into oral motor actions. To investigate whether oral somatosensory cortex processes food-related sensations and movements, we performed in vivo whole-cell recordings and motor mapping experiments in rats. Neurons in oral somatosensory cortex showed robust post-synaptic and sparse action potential responses to air puffs. Membrane potential showed that cold water evoked larger responses than room temperature or hot water. Most neurons showed no clear tuning of responses to bitter, sweet and neutral gustatory stimuli. Finally, motor mapping experiments with histological verification revealed an initiation of movements related to food consumption behavior, such as jaw opening and tongue protrusions. We conclude that somatosensory cortex: (i) provides a representation of the temperature of oral stimuli, (ii) does not systematically encode taste information and (iii) influences orofacial movements related to food consummatory behavior
Myosin Light-Chain Kinase Is Necessary for Membrane Homeostasis in Cochlear Inner Hair Cells
The structural homeostasis of the cochlear hair cell membrane is critical for all aspects of sensory transduction, but the regulation of its maintenance is not well understood. In this report, we analyzed the cochlear hair cells of mice with specific deletion of myosin light chain kinase (MLCK) in inner hair cells. MLCK-deficient mice showed impaired hearing, with a 5- to 14-dB rise in the auditory brainstem response (ABR) thresholds to clicks and tones of different frequencies and a significant decrease in the amplitude of the ABR waves. The mutant inner hair cells produced several ball-like structures around the hair bundles in vivo, indicating impaired membrane stability. Inner hair cells isolated from the knockout mice consistently displayed less resistance to hypoosmotic solution and less membrane F-actin. Myosin light-chain phosphorylation was also reduced in the mutated inner hair cells. Our results suggest that MLCK is necessary for maintaining the membrane stability of inner hair cells
- …