94 research outputs found

    Poke Weed Mitogen Requires Toll-Like Receptor Ligands for Proliferative Activity in Human and Murine B Lymphocytes

    Get PDF
    Poke weed mitogen (PWM), a lectin purified from Phytolacca americana is frequently used as a B cell-specific stimulus to trigger proliferation and immunoglobulin secretion. In the present study we investigated the mechanisms underlying the B cell stimulatory capacity of PWM. Strikingly, we observed that highly purified PWM preparations failed to induce B cell proliferation. By contrast, commercially available PWM preparations with B cell activity contained Toll-like receptor (TLR) ligands such as TLR2-active lipoproteins, lipopolysaccharide and DNA of bacterial origin. We show that these microbial substances contribute to the stimulatory activity of PWM. Additional experimental data highlight the capacity of PWM to enable B cell activation by immunostimulatory DNA. Based on these findings we propose that the lectin sensitizes B cells for TLR stimulation as described for B cell receptor ligation and that B cell mitogenicity of PWM preparations results from synergistic activity of the poke weed lectin and microbial TLR ligands present in the PWM preparations

    Driving change in dtap batch release testing

    Get PDF
    The complexity of vaccine manufacturing has raised the need to drive standardization and quality control requirements as well as batch release of vaccines. The purpose of release testing is to ensure that efficacy and safety of the vaccine product are maintained in all batches. Classical testing includes challenge experiments in animals that provide proof of vaccine potency and identify subpotent vaccines. However, novel concepts such as “consistency testing” question the continued need for in vivo experiments and propose to implement rigorous QC for lot-to-lot consistency testing with other methods at an earlier stage. Please click Download on the upper right corner to see the full abstract

    A 5-year look-back at the notification and management of vaccine supply shortages in Germany

    Get PDF
    Background: Unavailability of vaccines endangers the overall goal to protect individuals and whole populations against infections. Methods: The German notification system includes the publication of vaccine supply shortages reported by marketing authorisation holders (MAH), information on the availability of alternative vaccine products, guidance for physicians providing vaccinations and an unavailability reporting tool to monitor regional distribution issues. Aim: This study provides a retrospective analysis of supply issues and measures in the context of European and global vaccine supply constraints. Results: between October 2015 and December 2020, the 250 notifications concerned all types of vaccines (54 products). Most shortages were caused by increased demand associated with immigration in Germany in 2015 and 2016, new or extended vaccine recommendations, increased awareness, or changes in global immunisation programmes. Shortages of a duration up to 30 days were mitigated using existing storage capacities. Longer shortages, triggered by high demand on a national level, were mitigated using alternative products and re-allocation; in a few cases, vaccines were imported. However, for long lasting supply shortages associated with increased global demand, often occurring in combination with manufacturing issues, few compensatory mechanisms were available. Nevertheless, only few critical incidents were identified: (i) shortage of hexavalent vaccines endangering neonatal immunisation programmes in 2015;(ii) distribution issues with influenza vaccines in 2018; and (iii) unmet demand for pneumococcal and influenza vaccines during the coronavirus disease (COVID)-19 pandemic. Conclusion: Vaccine product shortages in Germany resemble those present in neighbouring EU states and often reflect increased global demand not matched by manufacturing capacities.Peer Reviewe

    T cell-independent, TLR-induced IL-12p70 production in primary human monocytes

    Get PDF
    IL-12p70 is a key cytokine for the induction of Th1 immune responses. IL-12p70 production in myeloid cells is thought to be strictly controlled by T cell help. In this work we demonstrate that primary human monocytes can produce IL-12p70 in the absence of T cell help. We show that human monocytes express TLR4 and TLR8 but lack TLR3 and TLR7 even after preincubation with type I IFN. Simultaneous stimulation of TLR4 and TLR8 induced IL-12p70 in primary human monocytes. IL-12p70 production in peripheral blood myeloid dendritic cells required combined stimulation of TLR7/8 ligands together with TLR4 or with TLR3 ligands. In the presence of T cell-derived IL-4, but not IFN-gamma, stimulation with TLR7/8 ligands was sufficient to stimulate IL-12p70 production. In monocytes, type I IFN was required but not sufficient to costimulate IL-12p70 induction by TLR8 ligation. Furthermore, TLR8 ligation inhibited LPS-induced IL-10 in monocytes, and LPS alone gained the ability to stimulate IL-12p70 in monocytes when the IL-10 receptor was blocked. Together, these results demonstrate that monocytes are licensed to synthesize IL-12p70 through type I IFN provided via the Toll/IL-1R domain-containing adaptor inducing IFN-beta pathway and the inhibition of IL-10, both provided by combined stimulation with TLR4 and TLR8 ligands, triggering a potent Th1 response before T cell help is established

    Effects of long-term cryopreservation of PBMC on recovery of B cell subpopulations

    No full text
    Cryopreservation of human peripheral blood mononuclear cells (PBMC) is used in many clinical and research applications to avoid direct and on-site analysis of samples. Storage of PBMC further allows prequalification of donor cells for routine laboratory methods involving the evaluation of immune responses. Previous studies reported changes in cellular composition and phenotype of PBMC following the freezing procedure. In our 12-month follow-up study, we focused on B cells and proportional representation of B cell subpopulations during long-term storage at −80 °C. Over the 12-month period, we observed a gradual decline in B cell viability and recovery. Notably, no changes in the proportional representation of human B cell subpopulations occurred in this period and the functional response elicited by antigen and TLR9 ligand CpG remained comparable to that observed after short-term storage for one month

    A cell-based in vitro assay for testing of immunological integrity of Tetanus toxoid vaccine antigen

    No full text
    Vaccines containing inactivated toxins confer protection by eliciting a neutralizing antibody response against bacterial toxins such as tetanus and diphtheria. At present, release of tetanus toxoid (TT) and diphtheria toxoid (DT)-containing vaccines relies on in vivo experiments showing the protective vaccine response. The aim of this study was to develop a reliable in vitro assay for TT vaccine antigen characterization with the potential of replacing in vivo potency experiments. To this end, we exploited that TT elicits a recall response in vaccinated donors: human peripheral blood mononuclear cells (PBMC) were stimulated with alum-adsorbed TT bulk antigen and low concentrations of TLR9 ligand; induction of TT-specific IgG was quantified via ELISpot after 5 days. Proof-of-concept was obtained using paired samples from donors before and after vaccination; anti-TT IgG was only detected in PBMC collected after booster vaccination; specificity was demonstrated with DT stimulation as control. Notably, when using PBMC from buffy coats, the specific response to TT was reproducible in 30% of cells; responsiveness correlated with higher numbers of switched memory B cells. Consecutive results showed that TT-specific IgG was also detectable when PBMC were stimulated with DTaP final vaccine product. Thus, the assay provides a viable means to test B-cell differentiation and induction of TT-specific IgG secretion using bulk antigen and final vaccine. However, prequalification of PBMC is required for reliable performance. Along with physicochemical and immunochemical methods, the functional assay could represent a complementary tool to replace in vivo potency assays in batch release of TT-containing vaccines

    Expression of Tumor Necrosis Factor Receptor 2 Characterizes TLR9-Driven Formation of Interleukin-10-Producing B Cells

    No full text
    B cell-derived interleukin-10 (IL-10) production has been described as a hallmark for regulatory function in B lymphocytes. However, there is an ongoing debate on the origin of IL-10-secreting B cells and lack of specific surface markers has turned into an important obstacle for studying human B regulatory cells. In this study, we propose that tumor necrosis factor receptor 2 (TNFR2) expression can be used for enrichment of IL-10-secreting B cells. Our data confirm that IL-10 production can be induced by TLR9 stimulation with CpG ODN and that IL-10 secretion accompanies differentiation of peripheral blood B cells into plasma blasts. We further show that CpG ODN stimulation induces TNFR2 expression, which correlates with IL-10 secretion and terminal differentiation. Indeed, flow cytometric sorting of TNFR2+ B cells revealed that TNFR2+ and TNFR2− fractions correspond to IL-10+ and IL-10− fractions, respectively. Furthermore, CpG-induced TNFR2+ B cells were predominantly found in the IgM+ CD27+ B cell subset and spontaneously released immunoglobulin. Finally, our data corroborate the functional impact of TNFR2 by demonstrating that stimulation with a TNFR2 agonist significantly augments IL-10 and IL-6 production in B cells. Altogether, our data highlight a new role for TNFR2 in IL-10-secreting human B lymphocytes along with the potential to exploit this finding for sorting and isolation of this currently ill-defined B cell subset

    How to draw the line - Raman spectroscopy as a tool for the assessment of biomedicines

    No full text
    Biomedicines are complex biochemical formulations with multiple components that require extensive quality control during manufacturing and in subsequent batch testing. A proof-of-concept study has shown that an application of Raman spectroscopy can be beneficial for a classification of vaccines. However, the complexity of biomedicines introduces new challenges to spectroscopic methodology that require advanced experimental protocols. We further show the impact of analytical protocols on vaccine classification using R as an Open Source data analysis platform. In conclusion, we advocate for standardized and transparent experimental and analytical procedures and discuss current findings and open challenges
    corecore