4 research outputs found
Multiple mitochondrial thioesterases have distinct tissue and substrate specificity and CoA regulation, suggesting unique functional roles.
Acyl-CoA thioesterases (Acots) hydrolyze fatty acyl-CoA esters. Acots in the mitochondrial matrix are poised to mitigate β-oxidation overload and maintain CoA availability. Several Acots associate with mitochondria, but whether they all localize to the matrix, are redundant, or have different roles is unresolved. Here, we compared the suborganellar localization, activity, expression, and regulation among mitochondrial Acots (Acot2, -7, -9, and -13) in mitochondria from multiple mouse tissues and from a model of Acot2 depletion. Acot7, -9, and -13 localized to the matrix, joining Acot2 that was previously shown to localize there. Mitochondria from heart, skeletal muscle, brown adipose tissue, and kidney robustly expressed Acot2, -9, and -13; Acot9 levels were substantially higher in brown adipose tissue and kidney mitochondria, as was activity for C4:0-CoA, a unique Acot9 substrate. In all tissues, Acot2 accounted for about half of the thioesterase activity for C14:0-CoA and C16:0-CoA. In contrast, liver mitochondria from fed and fasted mice expressed little Acot activity, which was confined to long-chain CoAs and due mainly to Acot7 and Acot13 activities. Matrix Acots occupied different functional niches, based on substrate specificity (Acot9 versus Acot2 and -13) and strong CoA inhibition (Acot7, -9, and -13, but not Acot2). Interpreted in the context of β-oxidation, CoA inhibition would prevent Acot-mediated suppression of β-oxidation, while providing a release valve when CoA is limiting. In contrast, CoA-insensitive Acot2 could provide a constitutive siphon for long-chain fatty acyl-CoAs. These results reveal how the family of matrix Acots can mitigate β-oxidation overload and prevent CoA limitation. © 2019 American Society for Biochemistry and Molecular Biology Inc.. All rights reserved
Quantification of lactoyl-CoA (lactyl-CoA) by liquid chromatography mass spectrometry in mammalian cells and tissues.
Lysine lactoylation is a recently described protein post-translational modification (PTM). However, the biochemical pathways responsible for this acylation remain unclear. Two metabolite-dependent mechanisms have been proposed: enzymatic histone lysine lactoylation derived from lactoyl-coenzyme A (lactoyl-CoA, also termed lactyl-CoA), and non-enzymatic lysine lactoylation resulting from acyl-transfer via lactoyl-glutathione. While the former has precedent in the form of enzyme-catalysed lysine acylation, the lactoyl-CoA metabolite has not been previously quantified in mammalian systems. Here, we use liquid chromatography-high-resolution mass spectrometry (LC-HRMS) together with a synthetic standard to detect and validate the presence of lactoyl-CoA in cell and tissue samples. Conducting a retrospective analysis of data from previously analysed samples revealed the presence of lactoyl-CoA in diverse cell and tissue contexts. In addition, we describe a biosynthetic route to generate 13C315N1-isotopically labelled lactoyl-CoA, providing a co-eluting internal standard for analysis of this metabolite. We estimate lactoyl-CoA concentrations of 1.14 Ă— 10-8 pmol per cell in cell culture and 0.0172 pmol mg-1 tissue wet weight in mouse heart. These levels are similar to crotonyl-CoA, but between 20 and 350 times lower than predominant acyl-CoAs such as acetyl-, propionyl- and succinyl-CoA. Overall our studies provide the first quantitative measurements of lactoyl-CoA in metazoans, and provide a methodological foundation for the interrogation of this novel metabolite in biology and disease
Complete Genome Sequence of Streptomyces lavendulae subsp. lavendulae CCM 3239 (Formerly “Streptomyces aureofaciens CCM 3239”), a Producer of the Angucycline-Type Antibiotic Auricin
Busche T, Novakova R, Al'Dilaimi A, et al. Complete Genome Sequence of Streptomyces lavendulae subsp. lavendulae CCM 3239 (Formerly “Streptomyces aureofaciens CCM 3239”), a Producer of the Angucycline-Type Antibiotic Auricin. Genome Announcements. 2018;6(9): e00103-18.Streptomyces lavendulae subsp. lavendulae CCM 3239 produces the angucycline antibiotic auricin and was thought to be the type strain of Streptomyces aureofaciens. We report the complete genome sequence of this strain, which consists of a linear chromosome and the linear plasmid pSA3239, and demonstrate it to be S. lavendulae subsp. lavendulae