2,322 research outputs found

    Effect of Landauer's blowtorch on the equilibration rate in a bistable potential

    Get PDF
    Kinetic aspect of Landauer's blowtorch effect is investigated for a model double-well potential with localized heating. Using the supersymmetric approach, we derive an approximate analytical expression for the equilibration rate as function of the strength, width and the position of the hot zone, and the barrier height. We find that the presence of the hot zone enhances the equilibration rate, which is found to be an increasing function of the strength and width of the hot zone. Our calculations also reveal an intriguing result, namely, that placing the hot zone away from the top of the potential barrier enhances the rate more than when it is placed close to it. A physically plausible explanation for this is attempted. The above analytical results are borne out by detailed numerical solution of the associated Smoluchowski equation for the inhomogeneous medium.Comment: 15 pages in LaTeX format and 6 figures in postscript E-Mail : [email protected] [email protected]

    Economic analysis of fertilizer options for maize production in Tanzania

    Get PDF
    United States Agency for International Developmen

    Relaxation oscillations and negative strain rate sensitivity in the Portevin - Le Chatelier effect

    Full text link
    A characteristic feature of the Portevin - Le Chatelier effect or the jerky flow is the stick-slip nature of stress-strain curves which is believed to result from the negative strain rate dependence of the flow stress. The latter is assumed to result from the competition of a few relevant time scales controlling the dynamics of jerky flow. We address the issue of time scales and its connection to the negative strain rate sensitivity of the flow stress within the framework of a model for the jerky flow which is known to reproduce several experimentally observed features including the negative strain rate sensitivity of the flow stress. We attempt to understand the above issues by analyzing the geometry of the slow manifold underlying the relaxational oscillations in the model. We show that the nature of the relaxational oscillations is a result of the atypical bent geometry of the slow manifold. The analysis of the slow manifold structure helps us to understand the time scales operating in different regions of the slow manifold. Using this information we are able to establish connection with the strain rate sensitivity of the flow stress. The analysis also helps us to provide a proper dynamical interpretation for the negative branch of the strain rate sensitivity.Comment: 7 figures, To appear in Phys. Rev.

    Rapidity dependence of deuteron production in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    We have measured the distributions of protons and deuterons produced in high energy heavy ion Au+Au collisions at RHIC over a very wide range of transverse and longitudinal momentum. Near mid-rapidity we have also measured the distribution of anti-protons and anti-deuterons. We present our results in the context of coalescence models. In particular we extract the "volume of homogeneity" and the average phase-space density for protons and anti-protons. Near central rapidity the coalescence parameter B2(pT)B_2(p_T) and the space averaged phase-space density (pT) (p_T) are very similar for both protons and anti-protons. For protons we see little variation of either B2(pT)B_2(p_T) or the space averaged phase-space density as the rapidity increases from 0 to 3. However both these quantities depend strongly on pTp_T at all rapidities. These results are in contrast to lower energy data where the proton and anti-proton phase-space densities are different at yy=0 and both B2B_2 and ff depend strongly on rapidity.Comment: Document updated after proofs received from PR

    Improved water and land management in the Ethiopian highlands and its impact on downstream stakeholders dependent on the Blue Nile

    Get PDF
    Improved water and land management in the Ethiopian highlands and its impact on downstream stakeholders dependent on the Blue Nile – short title Upstream-Downstream in Blue Nile River project is one of the projects in the Nile Basin supported by the CPWF. It was implemented during from 2007 to 2009 through a partnership of 8 institutions. The Blue Nile is the major tributary of the Nile River, contributing about 62% of the Nile flow at Aswan. About two thirds of the area of this densely populated basin is in the highlands and hence receives fairly high levels of annual rainfall of 800 to 2,200 mm. However, the rainfall is erratic in terms of both spatial and temporal distribution with prolonged dry spells and drought often leading to crop failures. Currently, water resources are only marginally exploited in the upper basin but are much more developed in the downstream reaches. The population, located in the downstream part of the Blue Nile, is dependent on the river water for supplementary irrigation and energy production. Canal and reservoir siltation is a major problem, adding the burdens of poor riparian farmers. This project was envisaged to improve the scientific understanding of the land and water resources of the basin, and hypothesized that with increased scientific knowledge of the hydrological, watershed, and institutional processes of the Blue Nile in Ethiopia (Abbay), constraints to up-scaling adaptable best practices and promising technologies (technical, socio-economic, institutional) could be overcome, which will result in significant positive impacts for both upstream and downstream communities and state
    corecore